CHAPTER11 Limits and Their Properties

Section 1.1 A Preview of Calculus 56
Section 1.2 Finding Limits Graphically and Numerically 57
Section 1.3 Evaluating Limits Analytically 69
Section 1.4 Continuity and One-Sided Limits 82
Section 1.5 Infinite Limits 93
Review Exercises 101
Problem Solving 109

C H A P T ER

Limits and Their Properties

Section 1.1 A Preview of Calculus

1. Calculus is the mathematics of change. Precalculus is more static. Answers will vary. Sample answer:
Precalculus: Area of a rectangle
Calculus: Area under a curve
Precalculus: Work done by a constant force
Calculus: Work done by a variable force
Precalculus: Center of a rectangle
Calculus: Centroid of a region
2. A secant line through a point P is a line joining P and another point Q on the graph.

The slope of the tangent line P is the limit of the slopes of the secant lines joining P and Q, as Q approaches P.
3. Precalculus: $(20 \mathrm{ft} / \mathrm{sec})(15 \mathrm{sec})=300 \mathrm{ft}$
4. Calculus required: Velocity is not constant

Distance $\approx(20 \mathrm{ft} / \mathrm{sec})(15 \mathrm{sec})=300 \mathrm{ft}$
5. Calculus required: Slope of the tangent line at $x=2$ is the rate of change, and equals about 0.16 .
6. Precalculus: rate of change $=$ slope $=0.08$
7. $f(x)=\sqrt{x}$
(a)

(b) slope $=m=\frac{\sqrt{x}-2}{x-4}$

$$
=\frac{\sqrt{x}-2}{(\sqrt{x}+2)(\sqrt{x}-2)}
$$

$$
=\frac{1}{\sqrt{x}+2}, x \neq 4
$$

$$
x=1: m=\frac{1}{\sqrt{1}+2}=\frac{1}{3}
$$

$$
x=3: m=\frac{1}{\sqrt{3}+2} \approx 0.2679
$$

$$
x=5: m=\frac{1}{\sqrt{5}+2} \approx 0.2361
$$

(c) At $P(4,2)$ the slope is $\frac{1}{\sqrt{4}+2}=\frac{1}{4}=0.25$.

You can improve your approximation of the slope at $x=4$ by considering x-values very close to 4 .
8. $f(x)=6 x-x^{2}$
(a)

(b) slope $=m=\frac{\left(6 x-x^{2}\right)-8}{x-2}=\frac{(x-2)(4-x)}{x-2}=(4-x), x \neq 2$

For $x=3, m=4-3=1$
For $x=2.5, m=4-2.5=1.5=\frac{3}{2}$
For $x=1.5, m=4-1.5=2.5=\frac{5}{2}$
(c) At $P(2,8)$, the slope is 2 . You can improve your approximation by considering values of x close to 2 .
9. (a) Area $\approx 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4} \approx 10.417$

Area $\approx \frac{1}{2}\left(5+\frac{5}{1.5}+\frac{5}{2}+\frac{5}{2.5}+\frac{5}{3}+\frac{5}{3.5}+\frac{5}{4}+\frac{5}{4.5}\right) \approx 9.145$
(b) You could improve the approximation by using more rectangles.
10. Answers will vary. Sample answer:

The instantaneous rate of change of an automobile's position is the velocity of the automobile, and can be determined by the speedometer.
11. (a) $D_{1}=\sqrt{(5-1)^{2}+(1-5)^{2}}=\sqrt{16+16} \approx 5.66$
(b) $D_{2}=\sqrt{1+\left(\frac{5}{2}\right)^{2}}+\sqrt{1+\left(\frac{5}{2}-\frac{5}{3}\right)^{2}}+\sqrt{1+\left(\frac{5}{3}-\frac{5}{4}\right)^{2}}+\sqrt{1+\left(\frac{5}{4}-1\right)^{2}}$

$$
\approx 2.693+1.302+1.083+1.031 \approx 6.11
$$

(c) Increase the number of line segments.

Section 1.2 Finding Limits Graphically and Numerically

1. As the graph of the function approaches 8 on the horizontal axis, the graph approaches 25 on the vertical axis.
2. (i) The values of f approach different numbers as x approaches c from different sides of c :

(ii) The values of f increase without bound as x approaches c :

(iii) The values of f oscillate between two fixed numbers as x approaches c :

3.

4. No. For example, consider Example 2 from this section.

$$
\begin{aligned}
& f(x)= \begin{cases}1, & x \neq 2 \\
0, & x=2\end{cases} \\
& \lim _{x \rightarrow 2} f(x)=1, \operatorname{but} f(2)=0
\end{aligned}
$$

5.

x	3.9	3.99	3.999	4	4.001	4.01	4.1
$f(x)$	0.3448	0.3344	0.3334	$?$	0.3332	0.3322	0.3226

$\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-5 x-4} \approx 0.3333 \quad\left(\right.$ Actual limit is $\left.\frac{1}{3}.\right)$
6.

x	2.9	2.99	2.999	3	3.001	3.01	3.1
$f(x)$	0.1695	0.1669	0.1667	$?$	0.1666	0.1664	0.1639

$\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9} \approx 0.1667 \quad\left(\right.$ Actual limit is $\left.\frac{1}{6}.\right)$
7.

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	0.5132	0.5013	0.5001	$?$	0.4999	0.4988	0.4881

$\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} \approx 0.5000 \quad\left(\right.$ Actual limit is $\left.\frac{1}{2}.\right)$
8.

x	2.9	2.99	2.999	3.001	3.01	3.1
$f(x)$	-0.0641	-0.0627	-0.0625	-0.0625	-0.0623	-0.0610

$\lim _{x \rightarrow 3} \frac{[1 /(x+1)]-(1 / 4)}{x-3} \approx-0.0625 \quad\left(\right.$ Actual limit is $-\frac{1}{16}$.)
9.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	0.9983	0.99998	1.0000	1.0000	0.99998	0.9983

$\lim _{x \rightarrow 0} \frac{\sin x}{x} \approx 1.0000 \quad$ (Actual limit is 1.$)$ (Make sure you use radian mode.)
10.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	0.0500	0.0050	0.0005	-0.0005	-0.0050	-0.0500

$\lim _{x \rightarrow 0} \frac{\cos x-1}{x} \approx 0.0000 \quad$ (Actual limit is 0 .) (Make sure you use radian mode.)
11.

x	0.9	0.99	0.999	1.001	1.01	1.1
$f(x)$	0.2564	0.2506	0.2501	0.2499	0.2494	0.2439

$\lim _{x \rightarrow 1} \frac{x-2}{x^{2}+x-6} \approx 0.2500 \quad\left(\right.$ Actual limit is $\frac{1}{4}$.)
12.

x	-4.1	-4.01	-4.001	-4	-3.999	-3.99	-3.9
$f(x)$	1.1111	1.0101	1.0010	$?$	0.9990	0.9901	0.9091

$\lim _{x \rightarrow-4} \frac{x+4}{x^{2}+9 x+20} \approx 1.0000 \quad$ (Actual limit is 1.)
13.

x	0.9	0.99	0.999	1.001	1.01	1.1
$f(x)$	0.7340	0.6733	0.6673	0.6660	0.6600	0.6015

$\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{6}-1} \approx 0.6666 \quad\left(\right.$ Actual limit is $\left.\frac{2}{3}.\right)$
14.

x	-3.1	-3.01	-3.001	-3	-2.999	-2.99	-2.9
$f(x)$	27.91	27.0901	27.0090	$?$	26.9910	26.9101	26.11

$\lim _{x \rightarrow-3} \frac{x^{3}+27}{x+3} \approx 27.0000 \quad$ (Actual limit is 27.)
15.

x	-6.1	-6.01	-6.001	-6	-5.999	-5.99	-5.9
$f(x)$	-0.1248	-0.1250	-0.1250	$?$	-0.1250	-0.1250	-0.1252

$\lim _{x \rightarrow-6} \frac{\sqrt{10-x}-4}{x+6} \approx-0.1250 \quad\left(\right.$ Actual limit is $\left.-\frac{1}{8}.\right)$
16.

x	1.9	1.99	1.999	2	2.001	2.01	2.1
$f(x)$	0.1149	0.115	0.1111	$?$	0.1111	0.1107	0.1075

$\lim _{x \rightarrow 2} \frac{x /(x+1)-2 / 3}{x-2} \approx 0.1111 \quad \quad \quad$ Actual limit is $\frac{1}{9}$.)
17.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	1.9867	1.9999	2.0000	2.0000	1.9999	1.9867

$\lim _{x \rightarrow 0} \frac{\sin 2 x}{x} \approx 2.0000 \quad$ (Actual limit is 2.) (Make sure you use radian mode.)
18.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	0.4950	0.5000	0.5000	0.5000	0.5000	0.4950

$\lim _{x \rightarrow 0} \frac{\tan x}{\tan 2 x} \approx 0.5000 \quad\left(\right.$ Actual limit is $\frac{1}{2}$.)
19. $f(x)=\frac{2}{x^{3}}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	-2000	-2×10^{6}	-2×10^{9}	$?$	2×10^{9}	2×10^{6}	2000

As x approaches 0 from the left, the function decreases without bound. As x approaches 0 from the right, the function increases without bound.
20. $f(x)=\frac{3|x|}{x^{2}}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	30	300	3000	$?$	3000	300	30

As x approaches 0 from either side, the function increases without bound.
21. $\lim _{x \rightarrow 3}(4-x)=1$
22. $\lim _{x \rightarrow 0} \sec x=1$
23. $\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2}(4-x)=2$
24. $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}\left(x^{2}+3\right)=4$
25. $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$ does not exist.

For values of x to the left of $2, \frac{|x-2|}{(x-2)}=-1$, whereas for values of x to the right of $2, \frac{|x-2|}{(x-2)}=1$.
26. $\lim _{x \rightarrow 5} \frac{2}{x-5}$ does not exist because the function increases and decreases without bound as x approaches 5 .
27. $\lim _{x \rightarrow 0} \cos (1 / x)$ does not exist because the function oscillates between -1 and 1 as x approaches 0 .
28. $\lim _{x \rightarrow \pi / 2} \tan x$ does not exist because the function increases without bound as x approaches $\frac{\pi}{2}$ from the left and decreases without bound as x approaches $\frac{\pi}{2}$ from the right.
29. (a) $f(1)$ exists. The black dot at $(1,2)$ indicates that $f(1)=2$.
(b) $\lim _{x \rightarrow 1} f(x)$ does not exist. As x approaches 1 from the left, $f(x)$ approaches 3.5 , whereas as x approaches 1 from the right, $f(x)$ approaches 1.
(c) $f(4)$ does not exist. The hollow circle at $(4,2)$ indicates that f is not defined at 4 .
(d) $\lim _{x \rightarrow 4} f(x)$ exists. As x approaches 4, $f(x)$ approaches 2: $\lim _{x \rightarrow 4} f(x)=2$.
30. (a) $f(-2)$ does not exist. The vertical dotted line indicates that f is not defined at -2 .
(b) $\lim _{x \rightarrow-2} f(x)$ does not exist. As x approaches -2 , the values of $f(x)$ do not approach a specific number.
(c) $f(0)$ exists. The black dot at $(0,4)$ indicates that $f(0)=4$.
(d) $\lim _{x \rightarrow 0} f(x)$ does not exist. As x approaches 0 from the left, $f(x)$ approaches $\frac{1}{2}$, whereas as x approaches 0 from the right, $f(x)$ approaches 4.
(e) $f(2)$ does not exist. The hollow circle at $\left(2, \frac{1}{2}\right)$ indicates that $f(2)$ is not defined.
(f) $\lim _{x \rightarrow 2} f(x)$ exists. As x approaches 2,
$f(x)$ approaches $\frac{1}{2}: \lim _{x \rightarrow 2} f(x)=\frac{1}{2}$.
(g) $f(4)$ exists. The black dot at $(4,2)$ indicates that $f(4)=2$.
(h) $\lim _{x \rightarrow 4} f(x)$ does not exist. As x approaches 4, the values of $f(x)$ do not approach a specific number.
31.

$\lim _{x \rightarrow c} f(x)$ exists for all values of $c \neq 4$.
32.

$\lim _{x \rightarrow c} f(x)$ exists for all values of $c \neq \pi$.
33. One possible answer is

34. One possible answer is

35. You need $|f(x)-3|=|(x+1)-3|=|x-2|<0.4$.

So, take $\delta=0.4$. If $0<|x-2|<0.4$, then $|x-2|=|(x+1)-3|=|f(x)-3|<0.4$, as desired.
36. You need $|f(x)-1|=\left|\frac{1}{x-1}-1\right|=\left|\frac{2-x}{x-1}\right|<0.01$. Let $\delta=\frac{1}{101}$. If $0<|x-2|<\frac{1}{101}$, then

$$
\begin{aligned}
-\frac{1}{101}<x-2<\frac{1}{101} & \Rightarrow 1-\frac{1}{101}<x-1<1+\frac{1}{101} \\
& \Rightarrow \frac{100}{101}<x-1<\frac{102}{101} \\
& \Rightarrow|x-1|>\frac{100}{101}
\end{aligned}
$$

and you have
$|f(x)-1|=\left|\frac{1}{x-1}-1\right|=\left|\frac{2-x}{x-1}\right|<\frac{1 / 101}{100 / 101}=\frac{1}{100}=0.01$.
37. You need to find δ such that $0<|x-1|<\delta$ implies
$|f(x)-1|=\left|\frac{1}{x}-1\right|<0.1$. That is,

$$
-0.1<\frac{1}{x}-1<0.1
$$

$1-0.1<\frac{1}{x}<1+0.1$
$\frac{9}{10}<\frac{1}{x}<\frac{11}{10}$
$\frac{10}{9}>\quad x>\frac{10}{11}$
$\frac{10}{9}-1>x-1>\frac{10}{11}-1$
$\frac{1}{9}>x-1>-\frac{1}{11}$.
So take $\delta=\frac{1}{11}$. Then $0<|x-1|<\delta$ implies
$-\frac{1}{11}<x-1<\frac{1}{11}$
$-\frac{1}{11}<x-1<\frac{1}{9}$.
Using the first series of equivalent inequalities, you obtain
$|f(x)-1|=\left|\frac{1}{x}-1\right|<0.1$.
38. You need to find δ such that $0<|x-1|<\delta$ implies

$$
\begin{aligned}
|f(x)-1| & =\left|2-\frac{1}{x}-1\right|=\left|1-\frac{1}{x}\right|<\varepsilon . \\
-\varepsilon & <\frac{1}{x}-1<\varepsilon \\
1-\varepsilon & <\frac{1}{x}<1+\varepsilon \\
\frac{1}{1-\varepsilon} & >x>\frac{1}{1+\varepsilon} \\
\frac{1}{1-\varepsilon}-1 & >x-1>\frac{1}{1+\varepsilon}-1 \\
\frac{\varepsilon}{1-\varepsilon} & >x-1>\frac{-\varepsilon}{1+\varepsilon}
\end{aligned}
$$

$$
\text { For } \varepsilon=0.05 \text {, take } \delta=\frac{0.05}{1-0.05} \approx 0.05 \text {. }
$$

For $\varepsilon=0.01$, take $\delta=\frac{0.01}{1-0.01} \approx 0.01$.
For $\varepsilon=0.005$, take $\delta=\frac{0.005}{1-0.005} \approx 0.005$.
As ε decreases, so does ε.
39. $\lim _{x \rightarrow 2}(3 x+2)=3(2)+2=8=L$
(a) $|(3 x+2)-8|<0.01$

$$
\begin{aligned}
|3 x-6| & <0.01 \\
3|x-2| & <0.01 \\
0<|x-2| & <\frac{0.01}{3} \approx 0.0033=\delta
\end{aligned}
$$

So, if $0<|x-2|<\delta=\frac{0.01}{3}$, you have

$$
\begin{aligned}
3|x-2| & <0.01 \\
|3 x-6| & <0.01 \\
|(3 x+2)-8| & <0.01 \\
|f(x)-L| & <0.01
\end{aligned}
$$

(b) $|(3 x+2)-8|<0.005$

$$
\begin{aligned}
|3 x-6| & <0.005 \\
3|x-2| & <0.005 \\
0<|x-2| & <\frac{0.005}{3} \approx 0.00167=\delta
\end{aligned}
$$

Finally, as in part (a), if $0<|x-2|<\frac{0.005}{3}$, you have $|(3 x+2)-8|<0.005$.
40. $\lim _{x \rightarrow 6}\left(6-\frac{x}{3}\right)=6-\frac{6}{3}=4=L$
(a) $\left|\left(6-\frac{x}{3}\right)-4\right|<0.01$

$$
\begin{aligned}
\left|2-\frac{x}{3}\right| & <0.01 \\
\left|-\frac{1}{3}(x-6)\right| & <0.01 \\
|x-6| & <0.03 \\
0<|x-6| & <0.03=\delta
\end{aligned}
$$

So, if $0<|x-6|<\delta=0.03$, you have

$$
\begin{aligned}
\left|-\frac{1}{3}(x-6)\right| & <0.01 \\
\left|2-\frac{x}{3}\right| & <0.01 \\
\left|\left(6-\frac{x}{3}\right)-4\right| & <0.01 \\
|f(x)-L| & <0.01
\end{aligned}
$$

(b) $\left|\left(6-\frac{x}{3}\right)-4\right|<0.005$

$$
\begin{aligned}
\left|2-\frac{x}{3}\right| & <0.005 \\
\left|-\frac{1}{3}(x-6)\right| & <0.005 \\
|x-6| & <0.015 \\
0 & <|x-6|<0.015=\delta
\end{aligned}
$$

As in part (a), if $0<|x-6|<0.015$, you have

$$
\left|\left(6-\frac{x}{3}\right)-4\right|<0.005
$$

41. $\lim _{x \rightarrow 2}\left(x^{2}-3\right)=2^{2}-3=1=L$
(a) $\left|\left(x^{2}-3\right)-1\right|<0.01$

$$
\left|x^{2}-4\right|<0.01
$$

$$
|(x+2)(x-2)|<0.01
$$

$$
|x+2||x-2|<0.01
$$

$$
|x-2|<\frac{0.01}{|x+2|}
$$

If you assume $1<x<3$, then

$$
\delta \approx 0.01 / 5=0.002
$$

So, if $0<|x-2|<\delta \approx 0.002$, you have

$$
\begin{aligned}
|x-2| & <0.002=\frac{1}{5}(0.01)<\frac{1}{|x+2|}(0.01) \\
|x+2||x-2| & <0.01 \\
\left|x^{2}-4\right| & <0.01 \\
\left|\left(x^{2}-3\right)-1\right| & <0.01 \\
|f(x)-L| & <0.01
\end{aligned}
$$

(b) $\left|\left(x^{2}-3\right)-1\right|<0.005$

$$
\begin{aligned}
\left|x^{2}-4\right| & <0.005 \\
|(x+2)(x-2)| & <0.005 \\
|x+2||x-2| & <0.005 \\
|x-2| & <\frac{0.005}{|x+2|}
\end{aligned}
$$

If you assume $1<x<3$, then $\delta=\frac{0.005}{5}=0.001$.

Finally, as in part (a), if $0<|x-2|<0.001$, you have $\left|\left(x^{2}-3\right)-1\right|<0.005$.
42. $\lim _{x \rightarrow 4}\left(x^{2}+6\right)=4^{2}+6=22=L$
(a) $\left|\left(x^{2}+6\right)-22\right|<0.01$

$$
\begin{aligned}
\left|x^{2}-16\right| & <0.01 \\
|(x+4)(x-4)| & <0.01 \\
|x+4||x-4| & <0.01 \\
|x-4| & <\frac{0.01}{|x+4|}
\end{aligned}
$$

If you assume $3<x<5$, then $\delta=\frac{0.01}{9} \approx 0.00111$.
So, if $0<|x-4|<\delta \approx \frac{0.01}{9}$, you have

$$
|x-4|<\frac{0.01}{9}<\frac{0.01}{|x+4|}
$$

$$
\begin{aligned}
|(x+4)(x-4)| & <0.01 \\
\left|x^{2}-16\right| & <0.01 \\
\left|\left(x^{2}+6\right)-22\right| & <0.01 \\
|f(x)-L| & <0.01
\end{aligned}
$$

(b) $\left|\left(x^{2}+6\right)-22\right|<0.005$

$$
\begin{aligned}
\left|x^{2}-16\right| & <0.005 \\
|(x-4)(x+4)| & <0.005 \\
|x-4||x+4| & <0.005 \\
|x-4| & <\frac{0.05}{|x+4|}
\end{aligned}
$$

If you assume $3<x<5$, then

$$
\delta=\frac{0.005}{9} \approx 0.00056
$$

Finally, as in part (a), if $0<|x-4|<\frac{0.005}{9}$,
you have $\left|\left(x^{2}+6\right)-22\right|<0.005$.
43. $\lim _{x \rightarrow 4}\left(x^{2}-x\right)=16-4=12=L$
(a) $\left|\left(x^{2}-x\right)-12\right|<0.01$
$|(x-4)(x+3)|<0.01$

$$
\begin{aligned}
|x-4||x+3| & <0.01 \\
|x-4| & <\frac{0.01}{|x+3|}
\end{aligned}
$$

If you assume $3<x<5$, then

$$
\delta=\frac{0.01}{8}=0.00125
$$

So, if $0<|x-4|<\frac{0.01}{8}$, you have

$$
|x-4|<\frac{0.01}{|x+3|}
$$

$$
|x-4||x+3|<0.01
$$

$$
\left|x^{2}-x-12\right|<0.01
$$

$$
\left|\left(x^{2}-x\right)-12\right|<0.01
$$

$$
|f(x)-L|<0.01
$$

(b) $\left|\left(x^{2}-x\right)-12\right|<0.005$

$$
|(x-4)(x+3)|<0.005
$$

$$
|x-4||x+3|<0.005
$$

$$
|x-4|<\frac{0.005}{|x+3|}
$$

If you assume $3<x<5$, then

$$
\delta=\frac{0.005}{8}=0.000625
$$

Finally, as in part (a), if $0<|x-4|<\frac{0.005}{8}$, you have $\left|\left(x^{2}-x\right)-12\right|<0.005$.
44. $\lim _{x \rightarrow 3} x^{2}=3^{2}=9=L$
(a) $\quad\left|x^{2}-9\right|<0.01$

$$
\begin{aligned}
|(x-3)(x+3)| & <0.01 \\
|x-3||x+3| & <0.01 \\
|x-3| & <\frac{0.01}{|x+3|}
\end{aligned}
$$

If you assume $2<x<4$, then

$$
\delta=\frac{0.01}{7} \approx 0.0014 .
$$

So, if $0<|x-3|<\frac{0.01}{7}$, you have

$$
\begin{aligned}
|x-3| & <\frac{0.01}{|x+3|} \\
|x-3||x+3| & <0.01 \\
\left|x^{2}-9\right| & <0.01 \\
|f(x)-L| & <0.01
\end{aligned}
$$

(b) $\quad\left|x^{2}-9\right|<0.005$

$$
\begin{aligned}
|(x-3)(x+3)| & <0.005 \\
|x-3||x+3| & <0.005 \\
|x-3| & <\frac{0.005}{|x+3|}
\end{aligned}
$$

If you assume $2<x<4$, then $\delta=\frac{0.005}{7} \approx 0.00071$.

Finally, as in part (a), if $0<|x-3|<\frac{0.005}{7}$, you have $\left|x^{2}-9\right|<0.005$.
45. $\lim _{x \rightarrow 4}(x+2)=4+2=6$

Given $\varepsilon>0$:

$$
\begin{aligned}
|(x+2)-6| & <\varepsilon \\
|x-4| & <\varepsilon=\delta
\end{aligned}
$$

So, let $\delta=\varepsilon$. So, if $0<|x-4|<\delta=\varepsilon$, you have

$$
\begin{aligned}
|x-4| & <\varepsilon \\
|(x+2)-6| & <\varepsilon \\
|f(x)-L| & <\varepsilon .
\end{aligned}
$$

46. $\lim _{x \rightarrow-2}(4 x+5)=4(-2)+5=-3$

Given $\varepsilon>0$:

$$
\begin{aligned}
|(4 x+5)-(-3)| & <\varepsilon \\
|4 x+8| & <\varepsilon \\
4|x+2| & <\varepsilon \\
|x+2| & <\frac{\varepsilon}{4}=\delta
\end{aligned}
$$

So, let $\delta=\frac{\varepsilon}{4}$.
So, if $0<|x+2|<\delta=\frac{\varepsilon}{4}$, you have

$$
\begin{aligned}
|x+2| & <\frac{\varepsilon}{4} \\
|4 x+8| & <\varepsilon \\
|(4 x+5)-(-3)| & <\varepsilon \\
|f(x)-L| & <\varepsilon .
\end{aligned}
$$

47. $\lim _{x \rightarrow-4}\left(\frac{1}{2} x-1\right)=\frac{1}{2}(-4)-1=-3$

Given $\varepsilon>0$:

$$
\begin{aligned}
\left|\left(\frac{1}{2} x-1\right)-(-3)\right| & <\varepsilon \\
\left|\frac{1}{2} x+2\right| & <\varepsilon \\
\frac{1}{2}|x-(-4)| & <\varepsilon \\
|x-(-4)| & <2 \varepsilon
\end{aligned}
$$

So, let $\delta=2 \varepsilon$.
So, if $0<|x-(-4)|<\delta=2 \varepsilon$, you have

$$
|x-(-4)|<2 \varepsilon
$$

$$
\left|\frac{1}{2} x+2\right|<\varepsilon
$$

$\left|\left(\frac{1}{2} x-1\right)+3\right|<\varepsilon$

$$
|f(x)-L|<\varepsilon .
$$

48. $\lim _{x \rightarrow 3}\left(\frac{3}{4} x+1\right)=\frac{3}{4}(3)+1=\frac{13}{4}$

Given $\varepsilon>0$:

$$
\begin{aligned}
\left|\left(\frac{3}{4} x+1\right)-\frac{13}{4}\right| & <\varepsilon \\
\left|\frac{3}{4} x-\frac{9}{4}\right| & <\varepsilon \\
\frac{3}{4}|x-3| & <\varepsilon \\
|x-3| & <\frac{4}{3} \varepsilon
\end{aligned}
$$

So, let $\delta=\frac{4}{3} \varepsilon$.
So, if $0<|x-3|<\delta=\frac{4}{3} \varepsilon$, you have

$$
\begin{aligned}
|x-3| & <\frac{4}{3} \varepsilon \\
\frac{3}{4}|x-3| & <\varepsilon \\
\left|\frac{3}{4} x-\frac{9}{4}\right| & <\varepsilon \\
\left|\left(\frac{3}{4} x+1\right)-\frac{13}{4}\right| & <\varepsilon \\
|f(x)-L| & <\varepsilon
\end{aligned}
$$

49. $\lim _{x \rightarrow 6} 3=3$

Given $\varepsilon>0$:
$|3-3|<\varepsilon$

$$
0<\varepsilon
$$

So, any $\delta>0$ will work.
So, for any $\delta>0$, you have

$$
\begin{aligned}
|3-3| & <\varepsilon \\
|f(x)-L| & <\varepsilon
\end{aligned}
$$

50. $\lim _{x \rightarrow 2}(-1)=-1$

Given $\varepsilon>0:|-1-(-1)|<\varepsilon$
$0<\varepsilon$
So, any $\delta>0$ will work.
So, for any $\delta>0$, you have
$|(-1)-(-1)|<\varepsilon$
$|f(x)-L|<\varepsilon$.
51. $\lim _{x \rightarrow 0} \sqrt[3]{x}=0$

Given $\varepsilon>0:|\sqrt[3]{x}-0|<\varepsilon$

$$
\begin{aligned}
|\sqrt[3]{x}| & <\varepsilon \\
|x| & <\varepsilon^{3}=\delta
\end{aligned}
$$

So, let $\delta=\varepsilon^{3}$.
So, for $0|x-0| \delta=\varepsilon^{3}$, you have

$$
\begin{aligned}
|x| & <\varepsilon^{3} \\
|\sqrt[3]{x}| & <\varepsilon \\
|\sqrt[3]{x}-0| & <\varepsilon \\
|f(x)-L| & <\varepsilon
\end{aligned}
$$

52. $\lim _{x \rightarrow 4} \sqrt{x}=\sqrt{4}=2$

Given $\varepsilon>0: \quad|\sqrt{x}-2|<\varepsilon$

$$
\begin{array}{r}
|\sqrt{x}-2||\sqrt{x}+2|<\varepsilon|\sqrt{x}+2| \\
|x-4|<\varepsilon|\sqrt{x}+2|
\end{array}
$$

Assuming $1<x<9$, you can choose $\delta=3 \varepsilon$. Then,

$$
\begin{aligned}
0<|x-4|<\delta=3 \varepsilon & \Rightarrow|x-4|<\varepsilon|\sqrt{x}+2| \\
& \Rightarrow|\sqrt{x}-2|<\varepsilon
\end{aligned}
$$

53. $\lim _{x \rightarrow-5}|x-5|=|(-5)-5|=|-10|=10$

Given $\varepsilon>0: \quad| | x-5|-10|<\varepsilon$

$$
\begin{aligned}
|-(x-5)-10| & <\varepsilon \quad(x-5<0) \\
|-x-5| & <\varepsilon \\
|x-(-5)| & <\varepsilon
\end{aligned}
$$

So, let $\delta=\varepsilon$.
So for $|x-(-5)|<\delta=\varepsilon$, you have

$$
\begin{aligned}
|-(x+5)| & <\varepsilon \\
|-(x-5)-10| & <\varepsilon \\
||x-5|-10| & <\varepsilon \quad(\text { because } x-5<0) \\
|f(x)-L| & <\varepsilon .
\end{aligned}
$$

54. $\lim _{x \rightarrow 3}|x-3|=|3-3|=0$

Given $\varepsilon>0:||x-3|-0|<\varepsilon$

$$
|x-3|<\varepsilon
$$

So, let $\delta=\varepsilon$.
So, for $0<|x-3|<\delta=\varepsilon$, you have

$$
\begin{aligned}
|x-3| & <\varepsilon \\
||x-3|-0| & <\varepsilon \\
|f(x)-L| & <\varepsilon
\end{aligned}
$$

55. $\lim _{x \rightarrow 1}\left(x^{2}+1\right)=1^{2}+1=2$

Given $\varepsilon>0$: $\left|\left(x^{2}+1\right)-2\right|<\varepsilon$

$$
\left|x^{2}-1\right|<\varepsilon
$$

$$
|(x+1)(x-1)|<\varepsilon
$$

$$
|x-1|<\frac{\varepsilon}{|x+1|}
$$

If you assume $0<x<2$, then $\delta=\varepsilon / 3$.
So for $0<|x-1|<\delta=\frac{\varepsilon}{3}$, you have

$$
\begin{gathered}
|x-1|<\frac{1}{3} \varepsilon<\frac{1}{|x+1|} \varepsilon \\
\left|x^{2}-1\right|<\varepsilon \\
\left|\left(x^{2}+1\right)-2\right|<\varepsilon \\
|f(x)-2|<\varepsilon .
\end{gathered}
$$

56. $\lim _{x \rightarrow-4}\left(x^{2}+4 x\right)=(-4)^{2}+4(-4)=0$

Given $\varepsilon>0:\left|\left(x^{2}+4 x\right)-0\right|<\varepsilon$

$$
\begin{aligned}
|x(x+4)| & <\varepsilon \\
|x+4| & <\frac{\varepsilon}{|x|}
\end{aligned}
$$

If you assume $-5<x<-3$, then $\delta=\frac{\varepsilon}{5}$.
So for $0<|x-(-4)|<\delta=\frac{\varepsilon}{5}$, you have

$$
\begin{aligned}
|x+4| & <\frac{\varepsilon}{5}<\frac{1}{|x|} \varepsilon \\
|x(x+4)| & <\varepsilon \\
\left|\left(x^{2}+4 x\right)-0\right| & <\varepsilon \\
|f(x)-L| & <\varepsilon
\end{aligned}
$$

57. $\lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi} 4=4$
58. $\lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi} x=\pi$
59. $f(x)=\frac{\sqrt{x+5}-3}{x-4}$
$\lim _{x \rightarrow 4} f(x)=\frac{1}{6}$

The domain is $[-5,4) \cup(4, \infty)$. The graphing utility does not show the hole at $\left(4, \frac{1}{6}\right)$.
60. $f(x)=\frac{x-3}{x^{2}-4 x+3}$
$\lim _{x \rightarrow 3} f(x)=\frac{1}{2}$

The domain is all $x \neq 1,3$. The graphing utility does not show the hole at $\left(3, \frac{1}{2}\right)$.
61. $C(t)=9.99-0.79 \llbracket 1-t \rrbracket, t>0$
(a) $C(10.75)=9.99-0.79 \llbracket 1-10.75 \rrbracket$
$=9.99-0.79(-10)$
$=\$ 17.89$
$C(10.75)$ represents the cost of a 10 -minute,
45-second call.
(b)

(c) The limit does not exist because the limits from the left and right are not equal.
62. $C(t)=5.79-0.99[1-t], t>0$
(a) $C(10.75)=5.79-0.99 \llbracket 1-10.75 \rrbracket$

$$
\begin{aligned}
& =5.79-0.99(-10) \\
& =\$ 15.69
\end{aligned}
$$

$C(10.75)$ represents the cost of a 10 -minute, 45-second call.
(b)

(c) The limit does not exist because the limits from the left and right are not equal.
63. Choosing a smaller positive value of δ will still satisfy the inequality $|f(x)-L|<\varepsilon$.
64. In the definition of $\lim _{x \rightarrow c} f(x), f$ must be defined on both sides of c, but does not have to be defined at c itself. The value of f at c has no bearing on the limit as x approaches c.
65. No. The fact that $f(2)=4$ has no bearing on the existence of the limit of $f(x)$ as x approaches 2 .
66. No. The fact that $\lim _{x \rightarrow 2} f(x)=4$ has no bearing on the value of f at 2 .
67. (a) $C=2 \pi r$

$$
r=\frac{C}{2 \pi}=\frac{6}{2 \pi}=\frac{3}{\pi} \approx 0.9549 \mathrm{~cm}
$$

(b) When $C=5.5: r=\frac{5.5}{2 \pi} \approx 0.87535 \mathrm{~cm}$

When $C=6.5: r=\frac{6.5}{2 \pi} \approx 1.03451 \mathrm{~cm}$
So $0.87535<r<1.03451$.
(c) $\lim _{x \rightarrow 3 / \pi}(2 \pi r)=6 ; \varepsilon=0.5 ; \delta \approx 0.0796$
70. $f(x)=\frac{|x+1|-|x-1|}{x}$

x	-1	-0.5	-0.1	0	0.1	0.5	1.0
$f(x)$	2	2	2	Undef.	2	2	2

$$
\lim _{x \rightarrow 0} f(x)=2
$$

Note that for
$-1<x<1, x \neq 0, f(x)=\frac{(x+1)+(x-1)}{x}=2$.
68. $V=\frac{4}{3} \pi r^{3}, V=2.48$
(a) $2.48=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
r^{3} & =\frac{1.86}{\pi} \\
r & \approx 0.8397 \mathrm{in} .
\end{aligned}
$$

(b) $\quad 2.45 \leq V \leq 2.51$
$2.45 \leq \frac{4}{3} \pi r^{3} \leq 2.51$
$0.5849 \leq r^{3} \leq 0.5992$
$0.8363 \leq r \leq 0.8431$
(c) For $\varepsilon=2.51-2.48=0.03, \delta \approx 0.003$
69. $f(x)=(1+x)^{1 / x}$
$\lim _{x \rightarrow 0}(1+x)^{1 / x}=e \approx 2.71828$

x	$f(x)$
-0.1	2.867972
-0.01	2.731999
-0.001	2.719642
-0.0001	2.718418
-0.00001	2.718295
-0.000001	2.718283

x	$f(x)$
0.1	2.593742
0.01	2.704814
0.001	2.716942
0.0001	2.718146
0.00001	2.718268
0.000001	2.718280

71.

Using the zoom and trace feature, $\delta=0.001$. So $(2-\delta, 2+\delta)=(1.999,2.001)$.

Note: $\frac{x^{2}-4}{x-2}=x+2$ for $x \neq 2$.
72. (a) $\lim _{x \rightarrow c} f(x)$ exists for all $c \neq-3$.
(b) $\lim _{x \rightarrow c} f(x)$ exists for all $c \neq-2,0$.
73. False. The existence or nonexistence of $f(x)$ at $x=c$ has no bearing on the existence of the limit of $f(x)$ as $x \rightarrow c$.
74. True
75. False. Let
$f(x)= \begin{cases}x-4, & x \neq 2 \\ 0, & x=2\end{cases}$
$f(2)=0$
$\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2}(x-4)=2 \neq 0$
76. False. Let
$f(x)= \begin{cases}x-4, & x \neq 2 \\ 0, & x=2\end{cases}$
$\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2}(x-4)=2$ and $f(2)=0 \neq 2$
77. $f(x)=\sqrt{x}$
$\lim _{x \rightarrow 0.25} \sqrt{x}=0.5$ is true.
As x approaches $0.25=\frac{1}{4}$ from either side,
$f(x)=\sqrt{x}$ approaches $\frac{1}{2}=0.5$.
78. $f(x)=\sqrt{x}$
$\lim _{x \rightarrow 0} \sqrt{x}=0$ is false.
$f(x)=\sqrt{x}$ is not defined on an open interval containing 0 because the domain of f is $x \geq 0$.
79. Using a graphing utility, you see that
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
$\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=2$, etc.
So, $\lim _{x \rightarrow 0} \frac{\sin n x}{x}=n$.
80. Using a graphing utility, you see that
$\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$
$\lim _{x \rightarrow 0} \frac{\tan 2 x}{x}=2, \quad$ etc.
So, $\lim _{x \rightarrow 0} \frac{\tan (n x)}{x}=n$.
81. If $\lim _{x \rightarrow c} f(x)=L_{1}$ and $\lim _{x \rightarrow c} f(x)=L_{2}$, then for every $\varepsilon>0$, there exists $\delta_{1}>0$ and $\delta_{2}>0$ such that
$|x-c|<\delta_{1} \Rightarrow\left|f(x)-L_{1}\right|<\varepsilon$ and $|x-c|<\delta_{2} \Rightarrow\left|f(x)-L_{2}\right|<\varepsilon$. Let δ equal the smaller of δ_{1} and δ_{2}. Then for $|x-c|<\delta$, you have $\left|L_{1}-L_{2}\right|=\left|L_{1}-f(x)+f(x)-L_{2}\right| \leq\left|L_{1}-f(x)\right|+\left|f(x)-L_{2}\right|<\varepsilon+\varepsilon$. Therefore, $\left|L_{1}-L_{2}\right|<2 \varepsilon$. Since $\varepsilon>0$ is arbitrary, it follows that $L_{1}=L_{2}$.
82. $f(x)=m x+b, m \neq 0$. Let $\varepsilon>0$ be given.

Take $\delta=\frac{\varepsilon}{|m|}$.
If $0<|x-c|<\delta=\frac{\varepsilon}{|m|}$, then
$|m||x-c|<\varepsilon$
$|m x-m c|<\varepsilon$
$|(m x+b)-(m c+b)|<\varepsilon$
which shows that $\lim _{x \rightarrow c}(m x+b)=m c+b$.
83. $\lim _{x \rightarrow c}[f(x)-L]=0$ means that for every $\varepsilon>0$ there exists $\delta>0$ such that if $0<|x-c|<\delta$, then
$|(f(x)-L)-0|<\varepsilon$.
This means the same as $|f(x)-L|<\varepsilon$ when
$0<|x-c|<\delta$.
So, $\lim _{x \rightarrow c} f(x)=L$.
84. (a) $(3 x+1)(3 x-1) x^{2}+0.01=\left(9 x^{2}-1\right) x^{2}+\frac{1}{100}$

$$
\begin{aligned}
& =9 x^{4}-x^{2}+\frac{1}{100} \\
& =\frac{1}{100}\left(10 x^{2}-1\right)\left(90 x^{2}-1\right)
\end{aligned}
$$

So, $(3 x+1)(3 x-1) x^{2}+0.01>0$ if
$10 x^{2}-1<0$ and $90 x^{2}-1<0$.
Let $(a, b)=\left(-\frac{1}{\sqrt{90}}, \frac{1}{\sqrt{90}}\right)$.
For all $x \neq 0$ in (a, b), the graph is positive.
You can verify this with a graphing utility.
(b) You are given $\lim _{x \rightarrow c} g(x)=L>0$. Let $\varepsilon=\frac{1}{2} L$.

There exists $\delta>0$ such that $0<|x-c|<\delta$
implies that $|g(x)-L|<\varepsilon=\frac{L}{2}$. That is,

$$
\left.\begin{array}{rl}
-\frac{L}{2} & <g(x)-L
\end{array}\right) \frac{L}{2}, ~=~ \frac{L}{2}<g(x)<\frac{3 L}{2}
$$

For x in the interval $(c-\delta, c+\delta), x \neq c$, you have $g(x)>\frac{L}{2}>0$, as desired.
85. The radius $O P$ has a length equal to the altitude z of the triangle plus $\frac{h}{2}$. So, $z=1-\frac{h}{2}$.

$$
\text { Area triangle }=\frac{1}{2} b\left(1-\frac{h}{2}\right)
$$

Area rectangle $=b h$
Because these are equal,
$\frac{1}{2} b\left(1-\frac{h}{2}\right)=b h$
$1-\frac{h}{2}=2 h$

$$
\frac{5}{2} h=1
$$

$$
h=\frac{2}{5} .
$$

86. Consider a cross section of the cone, where $E F$ is a diagonal of the inscribed cube. $A D=3, B C=2$.
Let x be the length of a side of the cube.
Then $E F=x \sqrt{2}$.
By similar triangles,

$$
\begin{aligned}
\frac{E F}{B C} & =\frac{A G}{A D} \\
\frac{x \sqrt{2}}{2} & =\frac{3-x}{3}
\end{aligned}
$$

Solving for x,

$$
\begin{aligned}
3 \sqrt{2} x & =6-2 x \\
(3 \sqrt{2}+2) x & =6 \\
x & =\frac{6}{3 \sqrt{2}+2}=\frac{9 \sqrt{2}-6}{7} \approx 0.96 .
\end{aligned}
$$

Section 1.3 Evaluating Limits Analytically

1. For polynomial functions $p(x)$, substitute c for x, and simplify.
2. An indeterminant form is obtained when evaluating a limit using direct substitution produces a meaningless fractional expression such as $0 / 0$. That is,
$\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$
for which $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0$
3. If a function f is squeezed between two functions h and $g, h(x) \leq f(x) \leq g(x)$, and h and g have the same limit L as $x \rightarrow c$, then $\lim _{x \rightarrow c} f(x)$ exists and equals L
4. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
$\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$
5. $\lim _{x \rightarrow 2} x^{3}=2^{3}=8$
6. $\lim _{x \rightarrow-3} x^{4}=(-3)^{4}=81$
7. $\lim _{x \rightarrow-3}(2 x+5)=2(-3)+5=-1$
8. $\lim _{x \rightarrow 9}(4 x-1)=4(9)-1=36-1=35$
9. $\lim _{x \rightarrow-3}\left(x^{2}+3 x\right)=(-3)^{2}+3(-3)=9-9=0$
10. $\lim _{x \rightarrow 2}\left(-x^{3}+1\right)=(-2)^{3}+1=-8+1=-7$
11. (a) $\lim _{x \rightarrow-3} f(x)=(-3)+7=4$
12. $\lim _{x \rightarrow-3}\left(2 x^{2}+4 x+1\right)=2(-3)^{2}+4(-3)+1$

$$
=18-12+1=7
$$

(b) $\lim _{x \rightarrow 4} g(x)=4^{2}=16$
(c) $\lim _{x \rightarrow-3} g(f(x))=g(4)=16$
12. $\lim _{x \rightarrow 1}\left(2 x^{3}-6 x+5\right)=2(1)^{3}-6(1)+5$

$$
=2-6+5=1
$$

13. $\lim _{x \rightarrow 3} \sqrt{x+8}=\sqrt{3+8}=\sqrt{11}$
14. $\lim _{x \rightarrow 2} \sqrt[3]{12 x+3}=\sqrt[3]{12(2)+3}$

$$
=\sqrt[3]{24+3}=\sqrt[3]{27}=3
$$

15. $\lim _{x \rightarrow-4}(1-x)^{3}=[1-(-4)]^{3}=5^{3}=125$
16. $\lim _{x \rightarrow 0}(3 x-2)^{4}=(3(0)-2)^{4}=(-2)^{4}=16$
17. $\lim _{x \rightarrow 2} \frac{3}{2 x+1}=\frac{3}{2(2)+1}=\frac{3}{5}$
18. $\lim _{x \rightarrow-5} \frac{5}{x+3}=\frac{5}{-5+3}=-\frac{5}{2}$
19. $\lim _{x \rightarrow 1} \frac{x}{x^{2}+4}=\frac{1}{1^{2}+4}=\frac{1}{5}$
20. $\lim _{x \rightarrow 1} \frac{3 x+5}{x+1}=\frac{3(1)+5}{1+1}=\frac{3+5}{2}=\frac{8}{2}=4$
21. $\lim _{x \rightarrow 7} \frac{3 x}{\sqrt{x+2}}=\frac{3(7)}{\sqrt{7+2}}=\frac{21}{3}=7$
22. $\lim _{x \rightarrow 3} \frac{\sqrt{x+6}}{x+2}=\frac{\sqrt{3+6}}{3+2}=\frac{\sqrt{9}}{5}=\frac{3}{5}$
23. (a) $\lim _{x \rightarrow 1} f(x)=5-1=4$
24. $\lim _{x \rightarrow 3} \tan \left(\frac{\pi x}{4}\right)=\tan \frac{3 \pi}{4}=-1$
(b) $\lim _{x \rightarrow 4} g(x)=4^{3}=64$
(c) $\lim _{x \rightarrow 1} g(f(x))=g(f(1))=g(4)=64$
25. (a) $\lim _{x \rightarrow 1} f(x)=4-1=3$
(b) $\lim _{x \rightarrow 3} g(x)=\sqrt{3+1}=2$
(c) $\lim _{x \rightarrow 1} g(f(x))=g(3)=2$
26. (a) $\lim _{x \rightarrow 4} f(x)=2\left(4^{2}\right)-3(4)+1=21$
(b) $\lim _{x \rightarrow 21} g(x)=\sqrt[3]{21+6}=3$
(c) $\lim _{x \rightarrow 4} g(f(x))=g(21)=3$
27. $\lim _{x \rightarrow \pi / 2} \sin x=\sin \frac{\pi}{2}=1$
28. $\lim _{x \rightarrow \pi} \tan x=\tan \pi=0$
29. $\lim _{x \rightarrow 1} \cos \frac{\pi x}{3}=\cos \frac{\pi}{3}=\frac{1}{2}$
30. $\lim _{x \rightarrow 2} \sin \frac{\pi x}{12}=\sin \frac{\pi(2)}{12}=\sin \frac{\pi}{6}=\frac{1}{2}$
31. $\lim _{x \rightarrow 0} \sec 2 x=\sec 0=1$
32. $\lim _{x \rightarrow \pi} \cos 3 x=\cos 3 \pi=-1$
33. $\lim _{x \rightarrow 5 \pi / 6} \sin x=\sin \frac{5 \pi}{6}=\frac{1}{2}$
34. $\lim _{x \rightarrow 5 \pi / 3} \cos x=\cos \frac{5 \pi}{3}=\frac{1}{2}$
35. $\lim _{x \rightarrow 7} \sec \left(\frac{\pi x}{6}\right)=\sec \frac{7 \pi}{6}=\frac{-2 \sqrt{3}}{3}$
36. $\lim _{x \rightarrow c} f(x)=\frac{2}{5}, \lim _{x \rightarrow c} g(x)=2$
(a) $\lim _{x \rightarrow c}[5 g(x)]=5 \lim _{x \rightarrow c} g(x)=5(2)=10$
(b) $\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)=\frac{2}{5}+2=\frac{12}{5}$
(c) $\lim _{x \rightarrow c}[f(x)+g(x)]=\left[\lim _{x \rightarrow c} f(x)\right]+\left[\lim _{x \rightarrow c} g(x)\right]=\frac{2}{5}(2)=\frac{4}{5}$
(d) $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}=\frac{2 / 5}{2}=\frac{1}{5}$
37. $\lim _{x \rightarrow c} f(x)=2, \lim _{x \rightarrow c} g(x)=\frac{3}{4}$
(a) $\lim _{x \rightarrow c}[4 f(x)]=4 \lim _{x \rightarrow c} f(x)=4(2)=8$
(b) $\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)=2+\frac{3}{4}=\frac{11}{4}$
(c) $\lim _{x \rightarrow c}[f(x) g(x)]=\left[\lim _{x \rightarrow c} f(x)\right]\left[\lim _{x \rightarrow c} g(x)\right]=2\left(\frac{3}{4}\right)=\frac{3}{2}$
(d) $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}=\frac{2}{(3 / 4)}=\frac{8}{3}$
38. $\lim _{x \rightarrow c} f(x)=16$
(a) $\lim _{x \rightarrow c}[f(x)]^{2}=\left[\lim _{x \rightarrow c} f(x)\right]^{2}=(16)^{2}=256$
(b) $\lim _{x \rightarrow c} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow c} f(x)}=\sqrt{16}=4$
(c) $\lim _{x \rightarrow c}[3 f(x)]=3\left[\lim _{x \rightarrow c} f(x)\right]=3(16)=48$
(d) $\lim _{x \rightarrow c}[f(x)]^{3 / 2}=\left[\lim _{x \rightarrow c} f(x)\right]^{3 / 2}=(16)^{3 / 2}=64$
39. $\lim _{x \rightarrow c} f(x)=27$
(a) $\lim _{x \rightarrow c} \sqrt[3]{f(x)}=\sqrt[3]{\lim _{x \rightarrow c} f(x)}=\sqrt[3]{27}=3$
40. $f(x)=\frac{x^{2}-1}{x+1}=\frac{(x+1)(x-1)}{x+1}$ and $g(x)=x-1$
(b) $\lim _{x \rightarrow c} \frac{f(x)}{18}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} 18}=\frac{27}{18}=\frac{3}{2}$
(c) $\lim _{x \rightarrow c}[f(x)]^{2}=\left[\lim _{x \rightarrow c} f(x)\right]^{2}=(27)^{2}=729$
(d) $\lim _{x \rightarrow c}[f(x)]^{2 / 3}=\left[\lim _{x \rightarrow c} f(x)\right]^{2 / 3}=(27)^{2 / 3}=9$
41. $f(x)=\frac{x^{2}+3 x}{x}=\frac{x(x+3)}{x}$ and $g(x)=x+3$
agree except at $x=0$.
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0}(x+3)=0+3=3$

42. $f(x)=\frac{x^{4}-5 x^{2}}{x^{2}}=\frac{x^{2}\left(x^{2}-5\right)}{x^{2}}$ and $g(x)=x^{2}-5$ agree except at $x=0$.
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0}\left(x^{2}-5\right)=0^{2}-5=-5$
 agree except at $x=-1$.
$\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} g(x)=\lim _{x \rightarrow-1}(x-1)=-1-1=-2$

43. $f(x)=\frac{3 x^{2}+5 x-2}{x+2}=\frac{(x+2)(3 x-1)}{x+2}$ and $g(x)=3 x-1$ agree except at $x=-2$.
$\lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} g(x)=\lim _{x \rightarrow-2}(3 x-1)$
$=3(-2)-1=-7$

44. $f(x)=\frac{x^{3}-8}{x-2}$ and $g(x)=x^{2}+2 x+4$ agree except at $x=2$.

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} g(x)=\lim _{x \rightarrow 2}\left(x^{2}+2 x+4\right) \\
&=2^{2}+2(2)+4=12 \\
& 0
\end{aligned}
$$

47. $\lim _{x \rightarrow 0} \frac{x}{x^{2}-x}=\lim _{x \rightarrow 0} \frac{x}{x(x-1)}=\lim _{x \rightarrow 0} \frac{1}{x-1}=\frac{1}{0-1}=-1$
48. $\lim _{x \rightarrow 0} \frac{7 x^{3}-x^{2}}{x}=\lim _{x \rightarrow 0}\left(7 x^{2}-x\right)=0-0=0$
49. $\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-16}=\lim _{x \rightarrow 4} \frac{x-4}{(x+4)(x-4)}$

$$
=\lim _{x \rightarrow 4} \frac{1}{x+4}=\frac{1}{4+4}=\frac{1}{8}
$$

50. $\lim _{x \rightarrow 5} \frac{5-x}{x^{2}-25}=\lim _{x \rightarrow 5} \frac{-(x-5)}{(x-5)(x+5)}$

$$
=\lim _{x \rightarrow 5} \frac{-1}{x+5}=\frac{-1}{5+5}=-\frac{1}{10}
$$

51. $\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x^{2}-9}=\lim _{x \rightarrow-3} \frac{(x+3)(x-2)}{(x+3)(x-3)}$

$$
=\lim _{x \rightarrow-3} \frac{x-2}{x-3}=\frac{-3-2}{-3-3}=\frac{-5}{-6}=\frac{5}{6}
$$

52. $\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x^{2}-x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+4)}{(x-2)(x+1)}$

$$
=\lim _{x \rightarrow 2} \frac{x+4}{x+1}=\frac{2+4}{2+1}=\frac{6}{3}=2
$$

53. $\lim _{x \rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}=\lim _{x \rightarrow 4} \frac{\sqrt{x+5}-3}{x-4} \cdot \frac{\sqrt{x+5}+3}{\sqrt{x+5}+3}$

$$
=\lim _{x \rightarrow 4} \frac{(x+5)-9}{(x-4)(\sqrt{x+5}+3)}=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x+5}+3}=\frac{1}{\sqrt{9}+3}=\frac{1}{6}
$$

54. $\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3}=\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3} \cdot \frac{\sqrt{x+1}+2}{\sqrt{x+1}+2}=\lim _{x \rightarrow 3} \frac{x-3}{(x-3)[\sqrt{x+1}+2]}$

$$
=\lim _{x \rightarrow 3} \frac{1}{\sqrt{x+1}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{4}
$$

55. $\lim _{x \rightarrow 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{x+5}-\sqrt{5}}{x} \cdot \frac{\sqrt{x+5}+\sqrt{5}}{\sqrt{x+5}+\sqrt{5}}$

$$
=\lim _{x \rightarrow 0} \frac{(x+5)-5}{x(\sqrt{x+5}+\sqrt{5})}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+5}+\sqrt{5}}=\frac{1}{\sqrt{5}+\sqrt{5}}=\frac{1}{2 \sqrt{5}}=\frac{\sqrt{5}}{10}
$$

56. $\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x} \cdot \frac{\sqrt{2+x}+\sqrt{2}}{\sqrt{2+x}+\sqrt{2}}$

$$
=\lim _{x \rightarrow 0} \frac{2+x-2}{(\sqrt{2+x}+\sqrt{2}) x}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{2+x}+\sqrt{2}}=\frac{1}{\sqrt{2}+\sqrt{2}}=\frac{1}{2 \sqrt{2}}=\frac{\sqrt{2}}{4}
$$

57. $\lim _{x \rightarrow 0} \frac{\frac{1}{3+x}-\frac{1}{3}}{x}=\lim _{x \rightarrow 0} \frac{3-(3+x)}{(3+x) 3(x)}=\lim _{x \rightarrow 0} \frac{-x}{(3+x)(3)(x)}=\lim _{x \rightarrow 0} \frac{-1}{(3+x) 3}=\frac{-1}{(3) 3}=-\frac{1}{9}$
58. $\lim _{x \rightarrow 0} \frac{\frac{1}{x+4}-\frac{1}{4}}{x}=\lim _{x \rightarrow 0} \frac{\frac{4-(x+4)}{4(x+4)}}{x}$

$$
=\lim _{x \rightarrow 0} \frac{-1}{4(x+4)}=\frac{-1}{4(4)}=-\frac{1}{16}
$$

59. $\lim _{\Delta x \rightarrow 0} \frac{2(x+\Delta x)-2 x}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{2 x+2 \Delta x-2 x}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{2 \Delta x}{\Delta x}=\lim _{\Delta x \rightarrow 0} 2=2$
60. $\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-x^{2}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{x^{2}+2 x \Delta x+(\Delta x)^{2}-x^{2}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x(2 x+\Delta x)}{\Delta x}=\lim _{\Delta x \rightarrow 0}(2 x+\Delta x)=2 x$
61. $\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-2(x+\Delta x)+1-\left(x^{2}-2 x+1\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{x^{2}+2 x \Delta x+(\Delta x)^{2}-2 x-2 \Delta x+1-x^{2}+2 x-1}{\Delta x}$

$$
=\lim _{\Delta x \rightarrow 0}(2 x+\Delta x-2)=2 x-2
$$

62. $\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{3}-x^{3}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}-x^{3}}{\Delta x}$

$$
=\lim _{\Delta x \rightarrow 0} \frac{\Delta x\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0}\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)=3 x^{2}
$$

63. $\lim _{x \rightarrow 0} \frac{\sin x}{5 x}=\lim _{x \rightarrow 0}\left[\left(\frac{\sin x}{x}\right)\left(\frac{1}{5}\right)\right]=(1)\left(\frac{1}{5}\right)=\frac{1}{5}$
64. $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}=\lim _{x \rightarrow 0}\left[\frac{\sin x}{x} \sin x\right]=(1) \sin 0=0$
65. $\lim _{x \rightarrow 0} \frac{3(1-\cos x)}{x}=\lim _{x \rightarrow 0}\left[3\left(\frac{(1-\cos x)}{x}\right)\right]=(3)(0)=0$
66. $\lim _{x \rightarrow 0} \frac{\tan ^{2} x}{x}=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x \cos ^{2} x}=\lim _{x \rightarrow 0}\left[\frac{\sin x}{x} \cdot \frac{\sin x}{\cos ^{2} x}\right]$

$$
=(1)(0)=0
$$

65. $\lim _{x \rightarrow 0} \frac{(\sin x)(1-\cos x)}{x^{2}}=\lim _{x \rightarrow 0}\left[\frac{\sin x}{x} \cdot \frac{1-\cos x}{x}\right]$

$$
=(1)(0)=0
$$

69. $\lim _{h \rightarrow 0} \frac{(1-\cos h)^{2}}{h}=\lim _{h \rightarrow 0}\left[\frac{1-\cos h}{h}(1-\cos h)\right]$

$$
=(0)(0)=0
$$

66. $\lim _{\theta \rightarrow 0} \frac{\cos \theta \tan \theta}{\theta}=\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$
67. $\lim _{\phi \rightarrow \pi} \phi \sec \phi=\pi(-1)=-\pi$
68. $\lim _{x \rightarrow 0} \frac{6-6 \cos x}{3}=\frac{6-6 \cos 0}{3}=\frac{6-6}{3}=0$
69. $\lim _{x \rightarrow 0} \frac{\cos x-\sin x-1}{2 x}=\lim _{x \rightarrow 0} \frac{-\sin x}{2 x}+\lim _{x \rightarrow 0} \frac{\cos x-1}{2 x}$

$$
\begin{aligned}
& =-\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x}{x}-\frac{1}{2} \lim _{x \rightarrow 0} \frac{1-\cos x}{x} \\
& =-\frac{1}{2}(1)-\frac{1}{2}(0)=-\frac{1}{2}
\end{aligned}
$$

73. $\lim _{t \rightarrow 0} \frac{\sin 3 t}{2 t}=\lim _{t \rightarrow 0}\left(\frac{\sin 3 t}{3 t}\right)\left(\frac{3}{2}\right)=(1)\left(\frac{3}{2}\right)=\frac{3}{2}$
74. $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 3 x}=\lim _{x \rightarrow 0}\left[2\left(\frac{\sin 2 x}{2 x}\right)\left(\frac{1}{3}\right)\left(\frac{3 x}{\sin 3 x}\right)\right]$

$$
=2(1)\left(\frac{1}{3}\right)(1)=\frac{2}{3}
$$

75. $f(x)=\frac{\sqrt{x+2}-\sqrt{2}}{x}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	0.358	0.354	0.354	$?$	0.354	0.353	0.349

It appears that the limit is 0.354 .

The graph has a hole at $x=0$.
Analytically, $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} \cdot \frac{\sqrt{x+2}+\sqrt{2}}{\sqrt{x+2}+\sqrt{2}}$

$$
=\lim _{x \rightarrow 0} \frac{x+2-2}{x(\sqrt{x+2}+\sqrt{2})}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+2}+\sqrt{2}}=\frac{1}{2 \sqrt{2}}=\frac{\sqrt{2}}{4} \approx 0.354
$$

76. $f(x)=\frac{4-\sqrt{x}}{x-16}$

x	15.9	15.99	15.999	16	16.001	16.01	16.1
$f(x)$	-0.1252	-0.125	-0.125	$?$	-0.125	-0.125	-0.1248

It appears that the limit is -0.125 .

The graph has a hole at $x=16$.
Analytically, $\lim _{x \rightarrow 16} \frac{4-\sqrt{x}}{x-16}=\lim _{x \rightarrow 16} \frac{(4-\sqrt{x})}{(\sqrt{x}+4)(\sqrt{x}-4)}=\lim _{x \rightarrow 16} \frac{-1}{\sqrt{x}+4}=-\frac{1}{8}$.
77. $f(x)=\frac{\frac{1}{2+x}-\frac{1}{2}}{x}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	-0.263	-0.251	-0.250	$?$	-0.250	-0.249	-0.238

It appears that the limit is -0.250 .

The graph has a hole at $x=0$.
Analytically, $\lim _{x \rightarrow 0} \frac{\frac{1}{2+x}-\frac{1}{2}}{x}=\lim _{x \rightarrow 0} \frac{2-(2+x)}{2(2+x)} \cdot \frac{1}{x}=\lim _{x \rightarrow 0} \frac{-x}{2(2+x)} \cdot \frac{1}{x}=\lim _{x \rightarrow 0} \frac{-1}{2(2+x)}=-\frac{1}{4}$.
78. $f(x)=\frac{x^{5}-32}{x-2}$

x	1.9	1.99	1.999	1.9999	2.0	2.0001	2.001	2.01	2.1
$f(x)$	72.39	79.20	79.92	79.99	$?$	80.01	80.08	80.80	88.41

It appears that the limit is 80 .

The graph has a hole at $x=2$.
Analytically, $\lim _{x \rightarrow 2} \frac{x^{5}-32}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{4}+2 x^{3}+4 x^{2}+8 x+16\right)}{x-2}=\lim _{x \rightarrow 2}\left(x^{4}+2 x^{3}+4 x^{2}+8 x+16\right)=80$.
(Hint: Use long division to factor $x^{5}-32$.)
79. $f(t)=\frac{\sin 3 t}{t}$

t	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(t)$	2.96	2.9996	3	$?$	3	2.9996	2.96

It appears that the limit is 3 .

The graph has a hole at $t=0$.
Analytically, $\lim _{t \rightarrow 0} \frac{\sin 3 t}{t}=\lim _{t \rightarrow 0} 3\left(\frac{\sin 3 t}{3 t}\right)=3(1)=3$.
80. $f(x)=\frac{\cos x-1}{2 x^{2}}$

x	-1	-0.1	-0.01	0.01	0.1	1
$f(x)$	-0.2298	-0.2498	-0.25	-0.25	-0.2498	-0.2298

It appears that the limit is -0.25 .

The graph has a hole at $x=0$.
Analytically, $\frac{\cos x-1}{2 x^{2}} \cdot \frac{\cos x+1}{\cos x+1}=\frac{\cos ^{2} x-1}{2 x^{2}(\cos x+1)}=\frac{-\sin ^{2} x}{2 x^{2}(\cos x+1)}=\frac{\sin ^{2} x}{x^{2}} \cdot \frac{-1}{2(\cos x+1)}$
$\lim _{x \rightarrow 0}\left[\frac{\sin ^{2} x}{x^{2}} \cdot \frac{-1}{2(\cos x+1)}\right]=1\left(\frac{-1}{4}\right)=-\frac{1}{4}=-0.25$
81. $f(x)=\frac{\sin x^{2}}{x}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	-0.099998	-0.01	-0.001	$?$	0.001	0.01	0.099998

It appears that the limit is 0 .

The graph has a hole at $x=0$.
Analytically, $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}=\lim _{x \rightarrow 0} x\left(\frac{\sin x^{2}}{x^{2}}\right)=0(1)=0$.
82. $f(x)=\frac{\sin x}{\sqrt[3]{x}}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	0.215	0.0464	0.01	$?$	0.01	0.0464	0.215

It appears that the limit is 0 .

The graph has a hole at $x=0$.
Analytically, $\lim _{x \rightarrow 0} \frac{\sin x}{\sqrt[3]{x}}=\lim _{x \rightarrow 0} \sqrt[3]{x^{2}}\left(\frac{\sin x}{x}\right)=(0)(1)=0$.
83. $f(x)=3 x-2$
$\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{3(x+\Delta x)-2-(3 x-2)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{3 x+3 \Delta x-2-3 x+2}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{3 \Delta x}{\Delta x}=3$
84. $f(x)=-6 x+3$

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{[-6(x+\Delta x)+3]-[-6 x+3]}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{-6 x-6 \Delta x+3+6 x-3}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{-6 \Delta x}{\Delta x}=\lim _{\Delta x \rightarrow 0}(-6)=-6
\end{aligned}
$$

85. $f(x)=x^{2}-4 x$

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-4(x+\Delta x)-\left(x^{2}-4 x\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{x^{2}+2 x \Delta x+\Delta x^{2}-4 x-4 \Delta x-x^{2}+4 x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x(2 x+\Delta x-4)}{\Delta x}=\lim _{\Delta x \rightarrow 0}(2 x+\Delta x-4)=2 x-4
\end{aligned}
$$

86. $f(x)=3 x^{2}+1$

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{\left[3(x+\Delta x)^{2}+1\right]-\left[3 x^{2}+1\right]}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\left(3 x^{2}+6 x \Delta x+1\right)-\left(3 x^{2}+1\right)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{6 x \Delta x}{\Delta x}=\lim _{\Delta x \rightarrow 0} 6 x=6 x
\end{aligned}
$$

87. $f(x)=2 \sqrt{x}$

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{2 \sqrt{x+\Delta x}-2 \sqrt{x}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{2(\sqrt{x+\Delta x}-\sqrt{x})}{\Delta x} \cdot \frac{\sqrt{x+\Delta x}+\sqrt{x}}{\sqrt{x+\Delta x}+\sqrt{x}} \\
& =\lim _{\Delta x \rightarrow 0} \frac{2(x+\Delta x-x)}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\lim _{\Delta x \rightarrow 0} \frac{2 \Delta x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& =\lim _{\Delta x \rightarrow 0} \frac{2}{\sqrt{x+\Delta x}+\sqrt{x}}=\frac{2}{2 \sqrt{x}}=\frac{1}{\sqrt{x}}=x^{-1 / 2}
\end{aligned}
$$

88. $f(x)=\sqrt{x}-5$

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{(\sqrt{x+\Delta x}-5)-(\sqrt{x}-5)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x} \cdot \frac{\sqrt{x+\Delta x}+\sqrt{x}}{\sqrt{x+\Delta x}+\sqrt{x}} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)-x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\sqrt{x+\Delta x}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

89. $f(x)=\frac{1}{x+3}$

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{\frac{1}{x+\Delta x+3}-\frac{1}{x+3}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{x+3-(x+\Delta x+3)}{(x+\Delta x+3)(x+3)} \cdot \frac{1}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{-\Delta x}{(x+\Delta x+3)(x+3) \Delta x}=\lim _{\Delta x \rightarrow 0} \frac{-1}{(x+\Delta x+3)(x+3)}=\frac{-1}{(x+3)^{2}}
\end{aligned}
$$

90. $f(x)=\frac{1}{x^{2}}$

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{\frac{1}{(x+\Delta x)^{2}}-\frac{1}{x^{2}}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{x^{2}-(x+\Delta x)^{2}}{x^{2}(x+\Delta x)^{2} \Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{x^{2}-\left[x^{2}+2 x \Delta x+(\Delta x)^{2}\right]}{x^{2}(x+\Delta x)^{2} \Delta x}=\lim _{\Delta x \rightarrow 0} \frac{-2 x \Delta x-(\Delta x)^{2}}{x^{2}(x+\Delta x)^{2} \Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{-2 x-\Delta x}{x^{2}(x+\Delta x)^{2}}=\frac{-2 x}{x^{4}}=-\frac{2}{x^{3}}
\end{aligned}
$$

91. $\lim _{x \rightarrow 0}\left(4-x^{2}\right) \leq \lim _{x \rightarrow 0} f(x) \leq \lim _{x \rightarrow 0}\left(3+x^{2}\right)$

$$
4 \leq \lim _{x \rightarrow 0} f(x) \leq 4
$$

Therefore, $\lim _{x \rightarrow 0} f(x)=4$.
92. $\lim _{x \rightarrow a}[b-|x-a|] \leq \lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a}[b+|x-a|]$

$$
b \leq \lim _{x \rightarrow a} f(x) \leq b
$$

95. $f(x)=x \sin \frac{1}{x}$

Therefore, $\lim _{x \rightarrow a} f(x)=b$.
93. $f(x)=|x| \sin x$

$\lim _{x \rightarrow 0}|x| \sin x=0$

$$
\lim _{x \rightarrow 0}\left(x \sin \frac{1}{x}\right)=0
$$

96. $f(x)=x \cos \frac{1}{x}$

97. (a) Two functions f and g agree at all but one point (on an open interval) if $f(x)=g(x)$ for all x in the interval except for $x=c$, where c is in the interval.
(b) $f(x)=\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}$ and $g(x)=x+1$ agree at all points except $x=1$.
(Other answers possible.)
98. Answers will vary. Sample answers:
(a) linear: $f(x)=\frac{1}{2} x ; \lim _{x \rightarrow 8} \frac{1}{2} x=\frac{1}{2}(8)=4$
(b) polynomial of degree 2: $f(x)=x^{2}-60 ; \lim _{x \rightarrow 8}\left(x^{2}-60\right)=8^{2}-60=4$
(c) rational: $f(x)=\frac{x}{2 x-14} ; \lim _{x \rightarrow 8} \frac{x}{2 x-14}=\frac{8}{2(8)-14}=\frac{8}{2}=4$
(d) radical: $f(x)=\sqrt{x+8} ; \lim _{x \rightarrow 8} \sqrt{x+8}=\sqrt{8+8}=\sqrt{16}=4$
(e) cosine: $f(x)=4 \cos (\pi x) ; \lim _{x \rightarrow 8} 4 \cos (\pi x)=4 \cos 8 \pi=4(1)=4$
(f) sine: $f(x)=4 \sin \left(\frac{\pi}{16} x\right) ; \lim _{x \rightarrow 8} 4 \sin \left(\frac{\pi}{16} x\right)=4 \sin \frac{\pi}{2}=4(1)=4$
99. $f(x)=x, g(x)=\sin x, h(x)=\frac{\sin x}{x}$

When the x-values are "close to" 0 the magnitude of f is approximately equal to the magnitude of g. So, $|g| /|f| \approx 1$ when x is "close to" 0 .
100. (a) Use the dividing out technique because the numerator and denominator have a common factor.
(b) Use the rationalizing technique because the numerator involves a radical expression.
101. $s(t)=-16 t^{2}+500$

$$
\begin{aligned}
\lim _{t \rightarrow 2} \frac{s(2)-s(t)}{2-t} & =\lim _{t \rightarrow 2} \frac{-16(2)^{2}+500-\left(-16 t^{2}+500\right)}{2-t} \\
& =\lim _{t \rightarrow 2} \frac{436+16 t^{2}-500}{2-t} \\
& =\lim _{t \rightarrow 2} \frac{16\left(t^{2}-4\right)}{2-t} \\
& =\lim _{t \rightarrow 2} \frac{16(t-2)(t+2)}{2-t} \\
& =\lim _{t \rightarrow 2}-16(t+2)=-64 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

The paint can is falling at about 64 feet/second.
102. $s(t)=-16 t^{2}+500=0$ when $t=\sqrt{\frac{500}{16}}=\frac{5 \sqrt{5}}{2}$ sec. The velocity at time $a=\frac{5 \sqrt{5}}{2}$ is

$$
\begin{aligned}
\lim _{t \rightarrow\left(\frac{5 \sqrt{5}}{2}\right)} \frac{s\left(\frac{5 \sqrt{5}}{2}\right)-s(t)}{\frac{5 \sqrt{5}}{2}-t} & =\lim _{t \rightarrow\left(\frac{5 \sqrt{5}}{2}\right)} \frac{0-\left(-16 t^{2}+500\right)}{\frac{5 \sqrt{5}}{2}-t} \\
& =\lim _{t \rightarrow\left(\frac{5 \sqrt{5}}{2}\right)} \frac{16\left(t^{2}-\frac{125}{4}\right)}{\frac{5 \sqrt{5}}{2}-t} \\
& =\lim _{t \rightarrow\left(\frac{5 \sqrt{5}}{2}\right)} \frac{16\left(t+\frac{5 \sqrt{5}}{2}\right)\left(t-\frac{5 \sqrt{5}}{2}\right)}{\frac{5 \sqrt{5}}{2}-t} \\
& =\lim _{t \rightarrow \frac{5 \sqrt{5}}{2}}\left[-16\left(t+\frac{5 \sqrt{5}}{2}\right)\right]=-80 \sqrt{5} \mathrm{ft} / \mathrm{sec} \\
& \approx-178.9 \mathrm{ft} / \mathrm{sec} .
\end{aligned}
$$

The velocity of the paint can when it hits the ground is about $178.9 \mathrm{ft} / \mathrm{sec}$.
103. $s(t)=-4.9 t^{2}+200$

$$
\begin{aligned}
\lim _{t \rightarrow 3} \frac{s(3)-s(t)}{3-t} & =\lim _{t \rightarrow 3} \frac{-4.9(3)^{2}+200-\left(-4.9 t^{2}+200\right)}{3-t} \\
& =\lim _{t \rightarrow 3} \frac{4.9\left(t^{2}-9\right)}{3-t} \\
& =\lim _{t \rightarrow 3} \frac{4.9(t-3)(t+3)}{3-t} \\
& =\lim _{t \rightarrow 3}[-4.9(t+3)] \\
& =-29.4 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

The object is falling about $29.4 \mathrm{~m} / \mathrm{sec}$.
104. $-4.9 t^{2}+200=0$ when $t=\sqrt{\frac{200}{4.9}}=\frac{20 \sqrt{5}}{7}$ sec. The velocity at time $a=\frac{20 \sqrt{5}}{7}$ is

$$
\begin{aligned}
\lim _{t \rightarrow a} \frac{s(a)-s(t)}{a-t} & =\lim _{t \rightarrow a} \frac{0-\left[-4.9 t^{2}+200\right]}{a-t} \\
& =\lim _{t \rightarrow a} \frac{4.9(t+a)(t-a)}{a-t} \\
& =\lim _{t \rightarrow \frac{20 \sqrt{5}}{7}}\left[-4.9\left(t+\frac{20 \sqrt{5}}{7}\right)\right]=-28 \sqrt{5} \mathrm{~m} / \mathrm{sec} \\
& \approx-62.6 \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

The velocity of the object when it hits the ground is about $62.6 \mathrm{~m} / \mathrm{sec}$.
105. Let $f(x)=1 / x$ and $g(x)=-1 / x . \lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 0} g(x)$ do not exist. However, $\lim _{x \rightarrow 0}[f(x)+g(x)]=\lim _{x \rightarrow 0}\left[\frac{1}{x}+\left(-\frac{1}{x}\right)\right]=\lim _{x \rightarrow 0}[0]=0$ and therefore does not exist.
106. Suppose, on the contrary, that $\lim _{x \rightarrow c} g(x)$ exists. Then, because $\lim _{x \rightarrow c} f(x)$ exists, so would $\lim _{x \rightarrow c}[f(x)+g(x)]$, which is a contradiction. So, $\lim _{x \rightarrow c} g(x)$ does not exist.
107. Given $f(x)=b$, show that for every $\varepsilon>0$ there exists a $\delta>0$ such that $|f(x)-b|<\varepsilon$ whenever $|x-c|<\delta$. Because $|f(x)-b|=|b-b|=0<\varepsilon$ for every $\varepsilon>0$, any value of $\delta>0$ will work.
108. Given $f(x)=x^{n}, n$ is a positive integer, then

$$
\begin{aligned}
\lim _{x \rightarrow c} x^{n} & =\lim _{x \rightarrow c}\left(x x^{n-1}\right) \\
& =\left[\lim _{x \rightarrow c} x\right]\left[\lim _{x \rightarrow c} x^{n-1}\right]=c\left[\lim _{x \rightarrow c}\left(x x^{n-2}\right)\right] \\
& =c\left[\lim _{x \rightarrow c} x\right]\left[\lim _{x \rightarrow c} x^{n-2}\right]=c(c) \lim _{x \rightarrow c}\left(x x^{n-3}\right) \\
& =\cdots=c^{n} .
\end{aligned}
$$

109. If $b=0$, the property is true because both sides are equal to 0 . If $b \neq 0$, let $\varepsilon>0$ be given. Because $\lim _{x \rightarrow c} f(x)=L$, there exists $\delta>0$ such that
$|f(x)-L|<\varepsilon /|b|$ whenever $0<|x-c|<\delta$. So, whenever $0<|x-c|<\delta$, we have
$|b||f(x)-L|<\varepsilon$ or $|b f(x)-b L|<\varepsilon$
which implies that $\lim _{x \rightarrow c}[b f(x)]=b L$.
110. Given $\lim _{x \rightarrow c} f(x)=0$:

For every $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-0|<\varepsilon$ whenever $0<|x-c|<\delta$.
Now $|f(x)-0|=|f(x)|=||f(x)|-0|<\varepsilon$ for $|x-c|<\delta$. Therefore, $\lim _{x \rightarrow c}|f(x)|=0$.
111. $-M|f(x)| \leq f(x) g(x) \leq M|f(x)|$
$\lim _{x \rightarrow c}(-M|f(x)|) \leq \lim _{x \rightarrow c}[f(x) g(x)] \leq \lim _{x \rightarrow c}(M|f(x)|)$
$-M(0) \leq \lim _{x \rightarrow c}[f(x) g(x)] \leq M(0)$

$$
0 \leq \lim _{x \rightarrow c}[f(x) g(x)] \leq 0
$$

Therefore, $\lim _{x \rightarrow c}[f(x) g(x)]=0$.
112. (a) If $\lim _{x \rightarrow c}|f(x)|=0$, then $\lim _{x \rightarrow c}[-|f(x)|]=0$.
$-|f(x)| \leq f(x) \leq|f(x)|$
$\lim _{x \rightarrow c}[-|f(x)|] \leq \lim _{x \rightarrow c} f(x) \leq \lim _{x \rightarrow c}|f(x)|$

$$
0 \leq \lim _{x \rightarrow c} f(x) \leq 0
$$

Therefore, $\lim _{x \rightarrow c} f(x)=0$.
(b) Given $\lim _{x \rightarrow c} f(x)=L$:

For every $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $0<|x-c|<\delta$. Since $||f(x)|-|L|| \leq|f(x)-L|<\varepsilon$ for $|x-c|<\delta$, then $\lim _{x \rightarrow c}|f(x)|=|L|$.
113. Let
$f(x)=\left\{\begin{aligned} 4, & \text { if } x \geq 0 \\ -4, & \text { if } x<0\end{aligned}\right.$
$\lim _{x \rightarrow 0}|f(x)|=\lim _{x \rightarrow 0} 4=4$.
$\lim _{x \rightarrow 0} f(x)$ does not exist because for $x<0, f(x)=-4$ and for $x \geq 0, f(x)=4$.
114. The graphing utility was set in degree mode, instead of radian mode.
115. The limit does not exist because the function approaches 1 from the right side of 0 and approaches -1 from the left side of 0 .

116. False. $\lim _{x \rightarrow \pi} \frac{\sin x}{x}=\frac{0}{\pi}=0$
117. True.
118. False. Let
$f(x)=\left\{\begin{array}{ll}x & x \neq 1 \\ 3 & x=1\end{array}, \quad c=1\right.$.
Then $\lim _{x \rightarrow 1} f(x)=1$ but $f(1) \neq 1$.
119. False. The limit does not exist because $f(x)$ approaches 3 from the left side of 2 and approaches 0 from the right side of 2 .

120. False. Let $f(x)=\frac{1}{2} x^{2}$ and $g(x)=x^{2}$.

Then $f(x)<g(x)$ for all $x \neq 0$. But
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=0$.
121. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=\lim _{x \rightarrow 0} \frac{1-\cos x}{x} \cdot \frac{1+\cos x}{1+\cos x}$

$$
=\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x(1+\cos x)}=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x(1+\cos x)}
$$

$$
=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{\sin x}{1+\cos x}
$$

$$
=\left[\lim _{x \rightarrow 0} \frac{\sin x}{x}\right]\left[\lim _{x \rightarrow 0} \frac{\sin x}{1+\cos x}\right]
$$

$$
=(1)(0)=0
$$

122. $f(x)= \begin{cases}0, & \text { if } x \text { is rational } \\ 1, & \text { if } x \text { is irrational }\end{cases}$
$g(x)= \begin{cases}0, & \text { if } x \text { is rational } \\ x, & \text { if } x \text { is irrational }\end{cases}$
$\lim _{x \rightarrow 0} f(x)$ does not exist.
No matter how "close to" $0 x$ is, there are still an infinite number of rational and irrational numbers so that
$\lim _{x \rightarrow 0} f(x)$ does not exist.
$\lim _{x \rightarrow 0} g(x)=0$
when x is "close to" 0 , both parts of the function are "close to" 0 .
123. $f(x)=\frac{\sec x-1}{x^{2}}$
(a) The domain of f is all $x \neq 0, \pi / 2+n \pi$.
(b)

The domain is not obvious. The hole at $x=0$ is not apparent.
(c) $\lim _{x \rightarrow 0} f(x)=\frac{1}{2}$
(d) $\frac{\sec x-1}{x^{2}}=\frac{\sec x-1}{x^{2}} \cdot \frac{\sec x+1}{\sec x+1}=\frac{\sec ^{2} x-1}{x^{2}(\sec x+1)}$
$=\frac{\tan ^{2} x}{x^{2}(\sec x+1)}=\frac{1}{\cos ^{2} x}\left(\frac{\sin ^{2} x}{x^{2}}\right) \frac{1}{\sec x+1}$
So, $\lim _{x \rightarrow 0} \frac{\sec x-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{1}{\cos ^{2} x}\left(\frac{\sin ^{2} x}{x^{2}}\right) \frac{1}{\sec x+1}$
$=1(1)\left(\frac{1}{2}\right)=\frac{1}{2}$.
124. (a) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \cdot \frac{1+\cos x}{1+\cos x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x^{2}(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}} \cdot \frac{1}{1+\cos x} \\
& =(1)\left(\frac{1}{2}\right)=\frac{1}{2}
\end{aligned}
$$

(b) From part (a),

$$
\begin{aligned}
\frac{1-\cos x}{x^{2}} & \approx \frac{1}{2} \Rightarrow 1-\cos x \\
& \approx \frac{1}{2} x^{2} \Rightarrow \cos x \\
& \approx 1-\frac{1}{2} x^{2} \text { for } x \\
& \approx 0 .
\end{aligned}
$$

(c) $\cos (0.1) \approx 1-\frac{1}{2}(0.1)^{2}=0.995$
(d) $\cos (0.1) \approx 0.9950$, which agrees with part (c).

Section 1.4 Continuity and One-Sided Limits

1. A function f is continuous at a point c if there is no interruption of the graph at c.
2. $c=-1$ because $\lim _{x \rightarrow-1^{+}} 2 \sqrt{x+1}=2 \sqrt{-1+1}=0$
3. The limit exists because the limit from the left and the limit from the right and equivalent.
4. If f is continuous on a close interval $[a, b]$ and $f(a) \neq f(b)$, then f takes on all values between $f(a)$ and $f(b)$.
5. (a) $\lim _{x \rightarrow 4^{+}} f(x)=3$
(b) $\lim _{x \rightarrow 4^{-}} f(x)=3$
(c) $\lim _{x \rightarrow 4} f(x)=3$

The function is continuous at $x=4$ and is continuous on $(-\infty, \infty)$.
6. (a) $\lim _{x \rightarrow-2^{+}} f(x)=-2$
(b) $\lim _{x \rightarrow-2^{-}} f(x)=-2$
(c) $\lim _{x \rightarrow-2} f(x)=-2$

The function is continuous at $x=-2$.
7. (a) $\lim _{x \rightarrow 3^{+}} f(x)=0$
(b) $\lim _{x \rightarrow 3^{-}} f(x)=0$
(c) $\lim _{x \rightarrow 3} f(x)=0$

The function is NOT continuous at $x=3$.
8. (a) $\lim _{x \rightarrow-3^{+}} f(x)=3$
(b) $\lim _{x \rightarrow-3^{-}} f(x)=3$
(c) $\lim _{x \rightarrow-3} f(x)=3$

The function is NOT continuous at $x=-3$ because $f(-3)=4 \neq \lim _{x \rightarrow-3} f(x)$.
9. (a) $\lim _{x \rightarrow 2^{+}} f(x)=-3$
(b) $\lim _{x \rightarrow 2^{-}} f(x)=3$
(c) $\lim _{x \rightarrow 2} f(x)$ does not exist

The function is NOT continuous at $x=2$.
10. (a) $\lim _{x \rightarrow-1^{+}} f(x)=0$
(b) $\lim _{x \rightarrow-1^{-}} f(x)=2$
(c) $\lim _{x \rightarrow-1} f(x)$ does not exist.

The function is NOT continuous at $x=-1$.
11. $\lim _{x \rightarrow 8^{+}} \frac{1}{x+8}=\frac{1}{8+8}=\frac{1}{16}$
12. $\lim _{x \rightarrow 3^{+}} \frac{2}{x+3}=\frac{2}{3+3}=\frac{1}{3}$
13. $\lim _{x \rightarrow 5^{+}} \frac{x-5}{x^{2}-25}=\lim _{x \rightarrow 5^{+}} \frac{x-5}{(x+5)(x-5)}$
$=\lim _{x \rightarrow 5^{+}} \frac{1}{x+5}=\frac{1}{10}$
14. $\lim _{x \rightarrow 4^{+}} \frac{4-x}{x^{2}-16}=\lim _{x \rightarrow 4^{+}} \frac{-(x-4)}{(x+4)(x-4)}=\lim _{x \rightarrow 4^{+}} \frac{-1}{x+4}$

$$
=\frac{-1}{4+4}=-\frac{1}{8}
$$

15. $\lim _{x \rightarrow-3^{-}} \frac{x}{\sqrt{x^{2}-9}}$ does not exist because $\frac{x}{\sqrt{x^{2}-9}}$
16. $\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x}-2}{x-4}=\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x}-2}{x-4} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2}$
$=\lim _{x \rightarrow 4^{-}} \frac{x-4}{(x-4)(\sqrt{x}+2)}$
$=\lim _{x \rightarrow 4^{-}} \frac{1}{\sqrt{x}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{4}$ decreases without bound as $x \rightarrow-3^{-}$.
17. $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=-1$
18. $\lim _{x \rightarrow 10^{+}} \frac{|x-10|}{x-10}=\lim _{x \rightarrow 10^{+}} \frac{x-10}{x-10}=1$
19. $\lim _{\Delta x \rightarrow 0^{-}} \frac{\frac{1}{x+\Delta x}-\frac{1}{x}}{\Delta x}=\lim _{\Delta x \rightarrow 0^{-}} \frac{x-(x+\Delta x)}{x(x+\Delta x)} \cdot \frac{1}{\Delta x}=\lim _{\Delta x \rightarrow 0^{-}} \frac{-\Delta x}{x(x+\Delta x)} \cdot \frac{1}{\Delta x}$

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0^{-}} \frac{-1}{x(x+\Delta x)} \\
& =\frac{-1}{x(x+0)}=-\frac{1}{x^{2}}
\end{aligned}
$$

20. $\lim _{\Delta x \rightarrow 0^{+}} \frac{(x+\Delta x)^{2}+(x+\Delta x)-\left(x^{2}+x\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0^{+}} \frac{x^{2}+2 x(\Delta x)+(\Delta x)^{2}+x+\Delta x-x^{2}-x}{\Delta x}$
$=\lim _{\Delta x \rightarrow 0^{+}} \frac{2 x(\Delta x)+(\Delta x)^{2}+\Delta x}{\Delta x}$
$=\lim _{\Delta x \rightarrow 0^{+}}(2 x+\Delta x+1)$
$=2 x+0+1=2 x+1$
21. $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{x+2}{2}=\frac{5}{2}$
22. $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(x^{2}-4 x+6\right)=9-12+6=3$
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(-x^{2}+4 x-2\right)=-9+12-2=1$
Since these one-sided limits disagree, $\lim _{x \rightarrow 3} f(x)$
does not exist.
23. $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(x+1)=2$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{3}+1\right)=2$
$\lim _{x \rightarrow 1} f(x)=2$
24. $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(1-x)=0$
25. $\lim _{x \rightarrow \pi} \cot x$ does not exist because
$\lim _{x \rightarrow \pi^{+}} \cot x$ and $\lim _{x \rightarrow \pi^{-}} \cot x$ do not exist.
26. $\lim _{x \rightarrow \pi / 2} \sec x$ does not exist because
$\lim _{x \rightarrow(\pi / 2)^{+}} \sec x$ and $\lim _{x \rightarrow(\pi / 2)^{-}} \sec x$ do not exist.
27. $\lim _{x \rightarrow 4^{-}}(5 \llbracket x \rrbracket-7)=5(3)-7=8$
$(\llbracket x \rrbracket=3$ for $3 \leq x<4)$
28. $\lim _{x \rightarrow 2^{+}}(2 x-\llbracket x \rrbracket)=2(2)-2=2$
29. $\lim _{x \rightarrow-1}\left(\llbracket \frac{x}{3} \rrbracket+3\right)=\llbracket-\frac{1}{3} \rrbracket+3=-1+3=2$
30. $\lim _{x \rightarrow 1}\left(1-\llbracket-\frac{x}{2} \rrbracket\right)=1-(-1)=2$
31. $f(x)=\frac{1}{x^{2}-4}$
has discontinuities at $x=-2$ and $x=2$ because $f(-2)$ and $f(2)$ are not defined.
32. $f(x)=\frac{x^{2}-1}{x+1}$
has a discontinuity at $x=-1$ because $f(-1)$ is not defined.
33. $f(x)=\frac{\llbracket x \rrbracket}{2}+x$
has discontinuities at each integer k because
$\lim _{x \rightarrow k^{-}} f(x) \neq \lim _{x \rightarrow k^{+}} f(x)$.
34. $f(x)=\left\{\begin{array}{ll}x, & x<1 \\ 2, & x=1 \\ 2 x-1, & x>1\end{array}\right.$ has a discontinuity at $x=1$
because $f(1)=2 \neq \lim _{x \rightarrow 1} f(x)=1$.
35. $g(x)=\sqrt{49-x^{2}}$ is continuous on $[-7,7]$.
36. $f(t)=3-\sqrt{9-t^{2}}$ is continuous on $[-3,3]$.
37. $\lim _{x \rightarrow 0^{-}} f(x)=3=\lim _{x \rightarrow 0^{+}} f(x) \cdot f$ is continuous on $[-1,4]$.
38. $g(2)$ is not defined. g is continuous on $[-1,2)$.
39. $f(x)=\frac{6}{x}$ has a nonremovable discontinuity at $x=0$ because $\lim _{x \rightarrow 0} f(x)$ does not exist.
40. $f(x)=\frac{4}{x-6}$ has a nonremovable discontinuity at $x=6$ because $\lim _{x \rightarrow 6} f(x)$ does not exist.
41. $f(x)=\frac{1}{4-x^{2}}=\frac{1}{(2-x)(2+x)}$ has nonremovable discontinuities at $x= \pm 2$ because $\lim _{x \rightarrow 2} f(x)$ and $\lim _{x \rightarrow-2} f(x)$ do not exist.
42. $f(x)=\frac{1}{x^{2}+1}$ is continuous for all real x.
43. $f(x)=3 x-\cos x$ is continuous for all real x.
44. $f(x)=\sin x-8 x$ is continuous for all real x.
45. $f(x)=\frac{x}{x^{2}-x}$ is not continuous at $x=0,1$.

Because $\frac{x}{x^{2}-x}=\frac{1}{x-1}$ for $x \neq 0, x=0$ is a removable discontinuity, whereas $x=1$ is a nonremovable discontinuity.
46. $f(x)=\frac{x}{x^{2}-4}$ has nonremovable discontinuities at $x=2$ and $x=-2$ because $\lim _{x \rightarrow 2} f(x)$ and $\lim _{x \rightarrow-2} f(x)$ do not exist.
47. $f(x)=\frac{x+2}{x^{2}-3 x-10}=\frac{x+2}{(x+2)(x-5)}$
has a nonremovable discontinuity at $x=5$ because $\lim _{x \rightarrow 5} f(x)$ does not exist, and has a removable discontinuity at $x=-2$ because
$\lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} \frac{1}{x-5}=-\frac{1}{7}$.
48. $f(x)=\frac{x+2}{x^{2}-x-6}=\frac{x+2}{(x-3)(x+2)}$
has a nonremovable discontinuity at $x=3$ because $\lim _{x \rightarrow 3} f(x)$ does not exist, and has a removable discontinuity at $x=-2$ because
$\lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} \frac{1}{x-3}=-\frac{1}{5}$.
49. $f(x)=\frac{|x+7|}{x+7}$
has a nonremovable discontinuity at $x=-7$ because $\lim _{x \rightarrow-7} f(x)$ does not exist.
50. $f(x)=\frac{2|x-3|}{x-3}$ has a nonremovable discontinuity at $x=3$ because $\lim _{x \rightarrow 3} f(x)$ does not exist.
51. $f(x)= \begin{cases}\frac{x}{2}+1, & x \leq 2 \\ 3-x, & x>2\end{cases}$
has a possible discontinuity at $x=2$.

1. $f(2)=\frac{2}{2}+1=2$
2. $\left.\begin{array}{rl}\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}}\left(\frac{x}{2}+1\right)=2 \\ \lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}}(3-x)=1\end{array}\right\} \quad \lim _{x \rightarrow 2} f(x)$ does not exist.

Therefore, f has a nonremovable discontinuity at $x=2$.
52. $f(x)= \begin{cases}-2 x, & x \leq 2 \\ x^{2}-4 x+1, & x>2\end{cases}$
has a possible discontinuity at $x=2$.

1. $f(2)=-2(2)=-4$
2. $\left.\begin{array}{rl}\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}}(-2 x)=-4 \\ \lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}}\left(x^{2}-4 x+1\right)=-3\end{array}\right\} \lim _{x \rightarrow 2} f(x)$ does not exist.

Therefore, f has a nonremovable discontinuity at $x=2$.
53. $f(x)= \begin{cases}\tan \frac{\pi x}{4}, & |x|<1 \\ x, & |x| \geq 1\end{cases}$

$$
= \begin{cases}\tan \frac{\pi x}{4}, & -1<x<1 \\ x, & x \leq-1 \text { or } x \geq 1\end{cases}
$$

has possible discontinuities at $x=-1, x=1$.

1. $f(-1)=-1$
$f(1)=1$
2. $\lim _{x \rightarrow-1} f(x)=-1$
$\lim _{x \rightarrow 1} f(x)=1$
3. $f(-1)=\lim _{x \rightarrow-1} f(x)$
$f(1)=\lim _{x \rightarrow 1} f(x)$
f is continuous at $x= \pm 1$, therefore, f is continuous for all real x.
4. $f(x)= \begin{cases}\csc \frac{\pi x}{6}, & |x-3| \leq 2 \\ 2, & |x-3|>2\end{cases}$
$= \begin{cases}\csc \frac{\pi x}{6}, & 1 \leq x \leq 5 \\ 2, & x<1 \text { or } x>5\end{cases}$ has possible discontinuities at $x=1, x=5$.
5. $f(1)=\csc \frac{\pi}{6}=2$
$f(5)=\csc \frac{5 \pi}{6}=2$
6. $\lim _{x \rightarrow 1} f(x)=2$
$\lim _{x \rightarrow 5} f(x)=2$
7. $f(1)=\lim _{x \rightarrow 1} f(x)$
$f(5)=\lim _{x \rightarrow 5} f(x)$
f is continuous at $x=1$ and $x=5$, therefore, f is continuous for all real x.
8. $f(x)=\csc 2 x$ has nonremovable discontinuities at integer multiples of $\pi / 2$.
9. $f(x)=\tan \frac{\pi x}{2}$ has nonremovable discontinuities at each $2 k+1, k$ is an integer.
10. $f(x)=\llbracket x-8 \rrbracket$ has nonremovable discontinuities at each integer k.
11. $f(x)=5-\llbracket x \rrbracket$ has nonremovable discontinuities at each integer k.
12. $f(1)=3$

Find a so that $\lim _{x \rightarrow 1^{-}}(a x-4)=3$

$$
\begin{array}{r}
a(1)-4=3 \\
a=7
\end{array}
$$

60. $f(1)=3$

Find a so that $\lim _{x \rightarrow 1^{+}}(a x+5)=3$

$$
\begin{aligned}
a(1)+5 & =3 \\
a & =-2 .
\end{aligned}
$$

61. $f(2)=8$

Find a so that $\lim _{x \rightarrow 2^{+}} a x^{2}=8 \Rightarrow a=\frac{8}{2^{2}}=2$.
62. $\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}} \frac{4 \sin x}{x}=4$
$\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}}(a-2 x)=a$
Let $a=4$.
63. Find a and b such that $\lim _{x \rightarrow-1^{+}}(a x+b)=-a+b=2$ and $\lim _{x \rightarrow 3^{-}}(a x+b)=3 a+b=-2$.

$$
\begin{aligned}
& a-b=-2 \\
& \frac{(+) 3 a+b}{}=-2 \\
& \hline 4 a=-4 \\
& a=-1 \\
& b=2+(-1)=1
\end{aligned} \quad f(x)= \begin{cases}2, & x \leq-1 \\
-x+1, & -1<x<3 \\
-2, & x \geq 3\end{cases}
$$

64. $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a}$

$$
=\lim _{x \rightarrow a}(x+a)=2 a
$$

Find a such $2 a=8 \Rightarrow a=4$.
65. $f(g(x))=(x-1)^{2}$

Continuous for all real x
66. $f(g(x))=5\left(x^{3}\right)+1=5 x^{3}+1$

Continuous for all real x
67. $f(g(x))=\frac{1}{\left(x^{2}+5\right)-6}=\frac{1}{x^{2}-1}$

Nonremovable discontinuities at $x= \pm 1$
68. $f(g(x))=\frac{1}{\sqrt{x-1}}$

Nonremovable discontinuity at $x=1$; continuous for all $x>1$
69. $f(g(x))=\tan \frac{x}{2}$

Not continuous at $x= \pm \pi, \pm 3 \pi, \pm 5 \pi, \ldots$ Continuous on the open intervals $\ldots,(-3 \pi,-\pi),(-\pi, \pi),(\pi, 3 \pi), \ldots$
70. $f(g(x))=\sin x^{2}$

Continuous for all real x
71. $y=\llbracket x \rrbracket-x$

Nonremovable discontinuity at each integer

72. $h(x)=\frac{1}{x^{2}+2 x-15}=\frac{1}{(x+5)(x-3)}$

Nonremovable discontinuities at $x=-5$ and $x=3$

73. $g(x)= \begin{cases}x^{2}-3 x, & x>4 \\ 2 x-5, & x \leq 4\end{cases}$

Nonremovable discontinuity at $x=4$

74. $f(x)= \begin{cases}\frac{\cos x-1}{x}, & x<0 \\ 5 x, & x \geq 0\end{cases}$
$f(0)=5(0)=0$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{(\cos x-1)}{x}=0$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(5 x)=0$
Therefore, $\lim _{x \rightarrow 0} f(x)=0=f(0)$ and f is continuous on the entire real line. ($x=0$ was the only possible discontinuity.)

75. $f(x)=\frac{x}{x^{2}+x+2}$

Continuous on $(-\infty, \infty)$
76. $f(x)=\frac{x+1}{\sqrt{x}}$

Continuous on $(0, \infty)$
77. $f(x)=3-\sqrt{x}$

Continuous on $[0, \infty)$
78. $f(x)=x \sqrt{x+3}$

Continuous on $[-3, \infty)$
79. $f(x)=\sec \frac{\pi x}{4}$

Continuous on:
$\ldots,(-6,-2),(-2,2),(2,6),(6,10), \ldots$
80. $f(x)=\cos \frac{1}{x}$

Continuous on $(-\infty, 0)$ and $(0, \infty)$
81. $f(x)= \begin{cases}\frac{x^{2}-1}{x-1}, & x \neq 1 \\ 2, & x=1\end{cases}$

Since $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1}$

$$
=\lim _{x \rightarrow 1}(x+1)=2
$$

f is continuous on $(-\infty, \infty)$.
82. $f(x)= \begin{cases}2 x-4, & x \neq 3 \\ 1, & x=3\end{cases}$

Since $\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3}(2 x-4)=2 \neq 1$,
f is continuous on $(-\infty, 3)$ and $(3, \infty)$.
83. $f(x)=\frac{1}{12} x^{4}-x^{3}+4$ is continuous on the interval $[1,2] . f(1)=\frac{37}{12}$ and $f(2)=-\frac{8}{3}$. By the Intermediate Value Theorem, there exists a number c in $[1,2]$ such that $f(c)=0$.
84. $f(x)=x^{3}+5 x-3$ is continuous on the interval $[0,1]$. $f(0)=-3$ and $f(1)=3$. By the Intermediate Value Theorem, there exists a number c in $[0,1]$ such that $f(c)=0$.
85. $f(x)=x^{2}-2-\cos x$ is continuous on $[0, \pi]$.
$f(0)=-3$ and $f(\pi)=\pi^{2}-1 \approx 8.87>0$. By the
Intermediate Value Theorem, $f(c)=0$ for at least one value of c between 0 and π.
86. $f(x)=-\frac{5}{x}+\tan \left(\frac{\pi x}{10}\right)$ is continuous on the interval $[1,4]$.
$f(1)=-5+\tan \left(\frac{\pi}{10}\right) \approx-4.7$ and
$f(4)=-\frac{5}{4}+\tan \left(\frac{2 \pi}{5}\right) \approx 1.8$. By the Intermediate Value Theorem, there exists a number c in $[1,4]$ such that $f(c)=0$.
87. Consider the intervals $[1,3]$ and $[3.5]$ for $f(x)=(x-3)^{2}=2$.
$f(1)=2>0$ and $f(3)=-2<0$, so f has at least one zero in $[1,3]$.
$f(3)=-2<0$ and $f(5)=2>0$, so f has at least one zero in $[3,5]$.
So, f has at least two zeros in $[1,5]$.
88. Consider the intervals $[1,3]$ and $[3,5]$ for $f(x)=2 \cos x$.
$f(1)=2 \cos 1 \approx 1.08>0$ and $f(3)=2 \cos 3 \approx-1.98<0$, so f has at least one zero in $[1,3]$.
$f(3)=2 \cos 3 \approx 1.98<0$ and $f(5)=2 \cos 5 \approx 0.57>0$, so f has at least one zero in $[3,5]$.
So, f has at least two zeros in $[1,5]$.
89. $f(x)=x^{3}+x-1$
$f(x)$ is continuous on $[0,1]$.
$f(0)=-1$ and $f(1)=1$
By the Intermediate Value Theorem, $f(c)=0$ for at least one value of c between 0 and 1 . Using a graphing utility to zoom in on the graph of $f(x)$, you find that
$x \approx 0.68$. Using the root feature, you find that $x \approx 0.6823$.
90. $f(x)=x^{4}-x^{2}+3 x-1$
$f(x)$ is continuous on $[0,1]$.
$f(0)=-1$ and $f(1)=2$
By the Intermediate Value Theorem, $f(c)=0$ for at least one value of c between 0 and 1 . Using a graphing utility to zoom in on the graph of $f(x)$, you find that
$x \approx 0.37$. Using the root feature, you find that $x \approx 0.3733$.
91. $f(x)=\sqrt{x^{2}+17 x+19}-6$
f is continuous on $[0,1]$.
$f(0)=\sqrt{19}-6 \approx-1.64<0$
$f(1)=\sqrt{37}-6 \approx 0.08>0$
By the Intermediate Value Theorem, $f(c)=0$ for at least one value of c between 0 and 1 . Using a graphing utility to zoom in on the graph of $f(x)$, you find that
$x \approx 0.95$. Using the root feature, you find that $x \approx 0.9472$.
92. $f(x)=\sqrt{x^{4}+39 x+13}-4$
f is continuous on $[0,1]$.
$f(0)=\sqrt{13}-4 \approx-0.39<0$
$f(1)=\sqrt{53}-4 \approx 3.28>0$
By the Intermediate Value Theorem, $f(c)=0$ for at least one value of c between 0 and 1 . Using a graphing utility to zoom in on the graph of $f(x)$, you find that $x \approx 0.08$. Using the root feature, you find that $x \approx 0.0769$.
93. $g(t)=2 \cos t-3 t$
g is continuous on $[0,1]$.
$g(0)=2>0$ and $g(1) \approx-1.9<0$.
By the Intermediate Value Theorem, $g(c)=0$ for at least one value of c between 0 and 1 . Using a graphing utility to zoom in on the graph of $g(t)$, you find that
$t \approx 0.56$. Using the root feature, you find that
$t \approx 0.5636$.
94. $h(\theta)=\tan \theta+3 \theta-4$ is continuous on $[0,1]$.
$h(0)=-4$ and $h(1)=\tan (1)-1 \approx 0.557$.
By the Intermediate Value Theorem, $h(c)=0$ for at least one value of c between 0 and 1 . Using a graphing utility to zoom in on the graph of $h(\theta)$, you find that
$\theta \approx 0.91$. Using the root feature, you obtain $\theta \approx 0.9071$.
95. $f(x)=x^{2}+x-1$
f is continuous on $[0,5]$.

$$
\begin{gathered}
f(0)=-1 \text { and } f(5)=29 \\
-1<11<29
\end{gathered}
$$

The Intermediate Value Theorem applies.

$$
\begin{aligned}
& x^{2}+x-1=11 \\
& x^{2}+x-12=0 \\
& (x+4)(x-3)=0 \\
& x=-4 \text { or } x=3 \\
& c=3(x=-4 \text { is not in the interval. }) \\
& \text { So, } f(3)=11 .
\end{aligned}
$$

96. $f(x)=x^{2}-6 x+8$
f is continuous on $[0,3]$.

$$
\begin{gathered}
f(0)=8 \text { and } f(3)=-1 \\
-1<0<8
\end{gathered}
$$

The Intermediate Value Theorem applies.

$$
\begin{aligned}
& \begin{array}{l}
x^{2}-6 x+8=0 \\
(x-2)(x-4)=0 \\
x=2 \text { or } x=4 \\
c=2(x=4 \text { is not in the interval. }) \\
\text { So, } f(2)=0
\end{array} \text {. }
\end{aligned}
$$

97. $f(x)=\sqrt{x+7}-2$
f is continuous on $[0,5]$.
$f(0)=\sqrt{7}-2 \approx 0.6458<1$
$f(5)=\sqrt{12}-2 \approx 1.4641>1$
The Intermediate Value Theorem applies.
$\sqrt{x+7}-2=1$

$$
\sqrt{x+7}=3
$$

$$
x+7=9
$$

$$
x=2
$$

$$
c=2
$$

So, $f(2)=1$.
98. $f(x)=\sqrt[3]{x}+8$
f is continuous on $[-9,-6]$.
$f(-9)=(-9)^{1 / 3}+8 \approx 5.9199<6$
$f(-6)=(-6)^{1 / 3}+8 \approx 6.1829>6$
The Intermediate Value Theorem applies.
$\sqrt[3]{x}+8=6$

$$
\sqrt[3]{x}=-2
$$

$$
x=(-2)^{3}=-8
$$

$$
c=-8
$$

So, $f(-8)=6$.
99. $f(x)=\frac{x-x^{3}}{x-4}$
f is continuous on [1,3]. The nonremovable discontinuity, $x=4$, lies outside the interval.
$f(1)=\frac{1-1}{1-4}=0<3$
$f(3)=24>3$
The Intermediate Value Theorem applies.

$$
\begin{aligned}
\frac{x-x^{3}}{x-4} & =3 \\
x-x^{3} & =3 x-12 \\
x^{3}+2^{x}-12 & =0 \\
(x-2)\left(x^{2}+2 x+6\right) & =0 \\
x & =2
\end{aligned}
$$

$\left(x^{2}+2 x+6\right.$ has no real solution. $)$

$$
c=2
$$

So, $f(2)=3$.
100. $f(x)=\frac{x^{2}+x}{x-1}$
f is continuous on $\left[\frac{5}{2}, 4\right]$. The nonremovable discontinuity, $x=1$, lies outside the interval.
$f\left(\frac{5}{2}\right)=\frac{35}{6}$ and $f(4)=\frac{20}{3}$
$\frac{35}{6}<6<\frac{20}{3}$
The Intermediate Value Theorem applies.

$$
\begin{aligned}
& \frac{x^{2}+x}{x-1}=6 \\
& x^{2}+x=6 x-6 \\
& x^{2}-5 x+6=0 \\
&(x-2)(x-3)=0 \\
& x=2 \text { or } x=3 \\
& c=3(x=2 \text { is not in the interval. })
\end{aligned}
$$

So, $f(3)=6$.
101. Answers will vary. Sample answer:
$f(x)=\frac{1}{(x-a)(x-b)}$
102. Answers will vary. Sample answer:

The function is not continuous at $x=3$ because $\lim _{x \rightarrow 3^{+}} f(x)=1 \neq 0=\lim _{x \rightarrow 3^{-}} f(x)$.
103. If f and g are continuous for all real x, then so is $f+g$ (Theorem 1.11, part 2). However, f / g might not be continuous if $g(x)=0$. For example, let
$f(x)=x$ and $g(x)=x^{2}-1$. Then f and g are continuous for all real x, but f / g is not continuous at $x= \pm 1$.
104. A discontinuity at c is removable if the function f can be made continuous at c by appropriately defining (or redefining) $f(c)$. Otherwise, the discontinuity is nonremovable.
(a) $f(x)=\frac{|x-4|}{x-4}$
(b) $f(x)=\frac{\sin (x+4)}{x+4}$
(c) $f(x)= \begin{cases}1, & x \geq 4 \\ 0, & -4<x<4 \\ 1, & x=-4 \\ 0, & x<-4\end{cases}$ $x=4$ is nonremovable, $x=-4$ is removable

105. True

1. $f(c)=L$ is defined.
2. $\lim _{x \rightarrow c} f(x)=L$ exists.
3. $f(c)=\lim _{x \rightarrow c} f(x)$

All of the conditions for continuity are met.
106. True. If $f(x)=g(x), x \neq c$, then $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)$ (if they exist) and at least one of these limits then does not equal the corresponding function value at $x=c$.
107. False. $f(x)=\cos x$ has two zeros in $[0,2 \pi]$. However, $f(0)$ and $f(2 \pi)$ have the same sign.
108. True. For $x \in(-1,0), \llbracket x \rrbracket=-1$, which implies that $\lim _{x \rightarrow 0^{-}} \llbracket x \rrbracket=-1$.
109. False. A rational function can be written as $P(x) / Q(x)$ where P and Q are polynomials of degree m and n, respectively. It can have, at most, n discontinuities.
110. False. $f(1)$ is not defined and $\lim _{x \rightarrow 1} f(x)$ does not exist.
111. The functions agree for integer values of x :
$\left.\begin{array}{l}g(x)=3-\llbracket-x \rrbracket=3-(-x)=3+x \\ f(x)=3+\llbracket x \rrbracket=3+x\end{array}\right\}$ for x an integer
However, for non-integer values of x, the functions differ by 1 .
$f(x)=3+\llbracket x \rrbracket=g(x)-1=2-\llbracket-x \rrbracket$.
For example,
$f\left(\frac{1}{2}\right)=3+0=3, g\left(\frac{1}{2}\right)=3-(-1)=4$.
112. $\lim _{t \rightarrow 4^{-}} f(t) \approx 28$
$\lim _{t \rightarrow 4^{+}} f(t) \approx 56$
At the end of day 3, the amount of chlorine in the pool has decreased to about 28 ounces. At the beginning of day 4 , more chlorine was added, and the amount is now about 56 ounces.
113. $C(t)=10-7.5[1-t \rrbracket, t>0$

There is a nonremovable discontinuity at every integer value of t, or gigabyte.
114. $N(t)=25\left(2 \llbracket \frac{t+2}{2} \rrbracket-t\right)$

t	0	1	1.8	2	3	3.8
$N(t)$	50	25	5	50	25	5

There is a nonremovable discontinuity at every positive even integer. The company replenishes its inventory every two months.

115. Let $s(t)$ be the position function for the run up to the campsite. $s(0)=0(t=0$ corresponds to 8:00 A.M., $s(20)=k($ distance to campsite $))$. Let $r(t)$ be the position function for the run back down the mountain: $r(0)=k, r(10)=0$. Let $f(t)=s(t)-r(t)$.

When $t=0$ (8:00 A.M.),
$f(0)=s(0)-r(0)=0-k<0$.
When $t=10$ (8:00 A.M.), $f(10)=s(10)-r(10)>0$.
Because $f(0)<0$ and $f(10)>0$, then there must be a value t in the interval $[0,10]$ such that $f(t)=0$. If $f(t)=0$, then $s(t)-r(t)=0$, which gives us $s(t)=r(t)$. Therefore, at some time t, where $0 \leq t \leq 10$, the position functions for the run up and the run down are equal.
116. Let $V=\frac{4}{3} \pi r^{3}$ be the volume of a sphere with radius r. V is continuous on $[5,8] . V(5)=\frac{500 \pi}{3} \approx 523.6$ and $V(8)=\frac{2048 \pi}{3} \approx 2144.7$. Because $523.6<1500<2144.7$, the Intermediate Value Theorem guarantees that there is at least one value r between 5 and 8 such that $V(r)=1500$. (In fact, $r \approx 7.1012$.)
117. Suppose there exists x_{1} in $[a, b]$ such that $f\left(x_{1}\right)>0$ and there exists x_{2} in $[a, b]$ such that $f\left(x_{2}\right)<0$. Then by the Intermediate Value Theorem, $f(x)$ must equal zero for some value of x in
$\left[x_{1}, x_{2}\right]\left(\right.$ or $\left[x_{2}, x_{1}\right]$ if $\left.x_{2}<x_{1}\right)$. So, f would have a zero in $[a, b]$, which is a contradiction. Therefore, $f(x)>0$ for all x in $[a, b]$ or $f(x)<0$ for all x in $[a, b]$.
118. Let c be any real number. Then $\lim _{x \rightarrow c} f(x)$ does not exist because there are both rational and irrational numbers arbitrarily close to c. Therefore, f is not continuous at c.
119. If $x=0$, then $f(0)=0$ and $\lim _{x \rightarrow 0} f(x)=0$. So, f is continuous at $x=0$.

If $x \neq 0$, then $\lim _{t \rightarrow x} f(t)=0$ for x rational, whereas
$\lim _{t \rightarrow x} f(t)=\lim _{t \rightarrow x} k t=k x \neq 0$ for x irrational. So, f is not continuous for all $x \neq 0$.
120. $\operatorname{sgn}(x)= \begin{cases}-1, & \text { if } x<0 \\ 0, & \text { if } x=0 \\ 1, & \text { if } x>0\end{cases}$
(a) $\lim _{x \rightarrow 0^{-}} \operatorname{sgn}(x)=-1$
(b) $\lim _{x \rightarrow 0^{+}} \operatorname{sgn}(x)=1$

(c) $\lim _{x \rightarrow 0} \operatorname{sgn}(x)$ does not exist.
121. (a)

(b) No. The frequency is oscillating.
122. (a) $f(x)= \begin{cases}0, & 0 \leq x<b \\ b, & b<x \leq 2 b\end{cases}$

NOT continuous at $x=b$.
(b) $g(x)= \begin{cases}\frac{x}{2}, & 0 \leq x \leq b \\ b-\frac{x}{2}, & b<x \leq 2 b\end{cases}$

Continuous on $[0,2 b]$.
123. $f(x)=\left\{\begin{array}{rr}1-x^{2}, & x \leq c \\ x, & x>c\end{array}\right.$
f is continuous for $x<c$ and for $x>c$. At $x=c$, you need $1-c^{2}=c$. Solving $c^{2}+c-1$, you obtain
$c=\frac{-1 \pm \sqrt{1+4}}{2}=\frac{-1 \pm \sqrt{5}}{2}$.
124. Let y be a real number. If $y=0$, then $x=0$. If $y>0$, then let $0<x_{0}<\pi / 2$ such that $M=\tan x_{0}>y$ (this is possible since the tangent function increases without bound on $[0, \pi / 2))$. By the Intermediate Value Theorem, $f(x)=\tan x$ is continuous on $\left[0, x_{0}\right]$ and $0<y<M$, which implies that there exists x between 0 and x_{0} such that $\tan x=y$. The argument is similar if $y<0$.
125. $f(x)=\frac{\sqrt{x+c^{2}}-c}{x}, c>0$

Domain: $x+c^{2} \geq 0 \Rightarrow x \geq-c^{2}$ and $x \neq 0,\left[-c^{2}, 0\right) \cup(0, \infty)$
$\lim _{x \rightarrow 0} \frac{\sqrt{x+c^{2}}-c}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{x+c^{2}}-c}{x} \cdot \frac{\sqrt{x+c^{2}}+c}{\sqrt{x+c^{2}}+c}=\lim _{x \rightarrow 0} \frac{\left(x+c^{2}\right)-c^{2}}{x\left[\sqrt{x+c^{2}}+c\right]}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+c^{2}}+c}=\frac{1}{2 c}$
Define $f(0)=1 /(2 c)$ to make f continuous at $x=0$.
126. 1. $f(c)$ is defined.
2. $\lim _{x \rightarrow c} f(x)=\lim _{\Delta x \rightarrow 0} f(c+\Delta x)=f(c)$ exists.
[Let $x=c+\Delta x$. As $x \rightarrow c, \Delta x \rightarrow 0]$
3. $\lim _{x \rightarrow c} f(x)=f(c)$.

Therefore, f is continuous at $x=c$.
127. $h(x)=x \llbracket x \rrbracket$

h has nonremovable discontinuities at $x= \pm 1, \pm 2, \pm 3, \ldots$.
128. (a) Define $f(x)=f_{2}(x)-f_{1}(x)$. Because f_{1} and f_{2} are continuous on $[a, b]$, so is f.
$f(a)=f_{2}(a)-f_{1}(a)>0$ and $f(b)=f_{2}(b)-f_{1}(b)<0$
By the Intermediate Value Theorem, there exists c in $[a, b]$ such that $f(c)=0$.
$f(c)=f_{2}(c)-f_{1}(c)=0 \Rightarrow f_{1}(c)=f_{2}(c)$
(b) Let $f_{1}(x)=x$ and $f_{2}(x)=\cos x$, continuous on $[0, \pi / 2], f_{1}(0)<f_{2}(0)$ and $f_{1}(\pi / 2)>f_{2}(\pi / 2)$.

So by part (a), there exists c in $[0, \pi / 2]$ such that $c=\cos (c)$.
Using a graphing utility, $c \approx 0.739$.
129. The statement is true.

If $y \geq 0$ and $y \leq 1$, then $y(y-1) \leq 0 \leq x^{2}$, as desired. So assume $y>1$. There are now two cases.
Case 1:
Case 2:

$$
\text { If } \begin{aligned}
& x \geq y-\frac{1}{2} \\
& \begin{aligned}
x^{2} & \geq\left(y-\frac{1}{2}\right)^{2} \\
& =y^{2}-y+\frac{1}{4} \\
& >y^{2}-y \\
& =y(y-1)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } x \leq y-\frac{1}{2} \text {, then } 2 x+1 \leq 2 y \text { and } \\
& \begin{aligned}
y(y-1) & =y(y+1)-2 y \\
& \leq(x+1)^{2}-2 y \\
& =x^{2}+2 x+1-2 y \\
& \leq x^{2}+2 y-2 y \\
& =x^{2}
\end{aligned}
\end{aligned}
$$

In both cases, $y(y-1) \leq x^{2}$.
130. $P(1)=P\left(0^{2}+1\right)=P(0)^{2}+1=1$
$P(2)=P\left(1^{2}+1\right)=P(1)^{2}+1=2$
$P(5)=P\left(2^{2}+1\right)=P(2)^{2}+1=5$
Continuing this pattern, you see that $P(x)=x$ for infinitely many values of x.
So, the finite degree polynomial must be constant: $P(x)=x$ for all x.

Section 1.5 Infinite Limits

1. A limit in which $f(x)$ increases or decreases without bound as x approaches c is called an infinite limit. ∞ is not a number. Rather, the symbol
$\lim _{x \rightarrow c} f(x)=\infty$
Says how the limit fails to exist.
2. The line $x=c$ is a vertical asymptote if the graph of f approaches $\pm \infty$ as x approaches c.
3. $\lim _{x \rightarrow-2^{+}} 2\left|\frac{x}{x^{2}-4}\right|=\infty$
$\lim _{x \rightarrow-2^{-}} 2\left|\frac{x}{x^{2}-4}\right|=\infty$
4. $\lim _{x \rightarrow-2^{+}} \frac{1}{x+2}=\infty$
$\lim _{x \rightarrow-2^{-}} \frac{1}{x+2}=-\infty$
5. $\lim _{x \rightarrow-2^{+}} \tan \frac{\pi x}{4}=-\infty$
$\lim _{x \rightarrow-2^{-}} \tan \frac{\pi x}{4}=\infty$
6. $\lim _{x \rightarrow-2^{+}} \sec \frac{\pi x}{4}=\infty$
$\lim _{x \rightarrow-2^{-}} \sec \frac{\pi x}{4}=-\infty$
7. $f(x)=\frac{1}{x-4}$

As x approaches 4 from the left, $x-4$ is a small negative number. So,
$\lim _{x \rightarrow 4^{-}} f(x)=-\infty$
As x approaches 4 from the right, $x-4$ is a small positive number. So,
$\lim _{x \rightarrow 4^{+}} f(x)=\infty$
8. $f(x)=\frac{-1}{x-4}$

As x approaches 4 from the left, $x-4$ is a small negative number. So,
$\lim _{x \rightarrow 4^{-}} f(x)=\infty$.
As x approaches 4 from the right, $x-4$ is a small positive number. So,
$\lim _{x \rightarrow 4^{+}} f(x)=-\infty$.
9. $f(x)=\frac{1}{(x-4)^{2}}$

As x approaches 4 from the left or right, $(x-4)^{2}$ is a small positive number. So,
$\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{-}} f(x)=\infty$.
10. $f(x)=\frac{-1}{(x-4)^{2}}$

As x approaches 4 from the left or right, $(x-4)^{2}$ is a small positive number. So,
$\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{+}} f(x)=-\infty$.
11. $f(x)=\frac{1}{x^{2}-9}$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
$f(x)$	0.308	1.639	16.64	166.6	-166.7	-16.69	-1.695	-0.364

$$
\begin{aligned}
\lim _{x \rightarrow-3^{-}} f(x) & =\infty \\
\lim _{x \rightarrow-3^{+}} f(x) & =-\infty
\end{aligned}
$$

12. $f(x)=\frac{x}{x^{2}-9}$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
$f(x)$	-1.077	-5.082	-50.08	-500.1	499.9	49.92	4.915	0.9091

$\lim _{x \rightarrow-3^{-}} f(x)=-\infty$
$\lim _{x \rightarrow-3^{+}} f(x)=\infty$

13. $f(x)=\frac{x^{2}}{x^{2}-9}$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
$f(x)$	3.769	15.75	150.8	1501	-1499	-149.3	-14.25	-2.273

$\lim _{x \rightarrow-3^{-}} f(x)=\infty$
$\lim _{x \rightarrow-3^{+}} f(x)=-\infty$

14. $f(x)=-\frac{1}{3+x}$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
$f(x)$	2	10	100	1000	-1000	-100	-10	-2

$\lim _{x \rightarrow-3^{-}} f(x)=\infty$
$\lim _{x \rightarrow-3^{+}} f(x)=-\infty$

15. $f(x)=\cot \frac{\pi x}{3}$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
$f(x)$	-1.7321	-9.514	-95.49	-954.9	954.9	95.49	9.514	1.7321

$\lim _{x \rightarrow-3^{-}} f(x)=-\infty$
$\lim _{x \rightarrow-3^{+}} f(x)=\infty$

16. $f(x)=\tan \frac{\pi x}{6}$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
$f(x)$	3.73	19.08	190.98	1909.9	-11909.9	-190.98	-19.08	-3.73

$\lim _{x \rightarrow-3^{-}} f(x)=\infty$
$\lim _{x \rightarrow-3^{+}} f(x)=-\infty$

17. $f(x)=\frac{1}{x^{2}}$
$\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=\infty=\lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}$
Therefore, $x=0$ is a vertical asymptote.
18. $f(x)=\frac{2}{(x-3)^{3}}$
$\lim _{x \rightarrow 3^{-}} \frac{2}{(x-3)^{3}}=-\infty$
$\lim _{x \rightarrow 3^{+}} \frac{2}{(x-3)^{3}}=\infty$
Therefore, $x=3$ is a vertical asymptote.
19. $f(x)=\frac{x^{2}}{x^{2}-4}=\frac{x^{2}}{(x+2)(x-2)}$
$\lim _{x \rightarrow-2^{-}} \frac{x^{2}}{x^{2}-4}=\infty$ and $\lim _{x \rightarrow-2^{+}} \frac{x^{2}}{x^{2}-4}=-\infty$
Therefore, $x=-2$ is a vertical asymptote.
$\lim _{x \rightarrow 2^{-}} \frac{x^{2}}{x^{2}-4}=-\infty$ and $\lim _{x \rightarrow 2^{+}} \frac{x^{2}}{x^{2}-4}=\infty$
Therefore, $x=2$ is a vertical asymptote.
20. $f(x)=\frac{3 x}{x^{2}+9}$

No vertical asymptotes because the denominator is never zero.
21. $g(t)=\frac{t-1}{t^{2}+1}$

No vertical asymptotes because the denominator is never zero.
22. $h(s)=\frac{3 s+4}{s^{2}-16}=\frac{3 s+4}{(s-4)(s+4)}$
$\lim _{s \rightarrow 4^{-}} \frac{3 s+4}{s^{2}-16}=-\infty$ and $\lim _{s \rightarrow 4^{+}} \frac{3 s+4}{s^{2}-16}=\infty$
Therefore, $s=4$ is a vertical asymptote.
$\lim _{s \rightarrow-4^{-}} \frac{3 s+4}{s^{2}-16}=-\infty$ and $\lim _{s \rightarrow-4^{+}} \frac{3 s+4}{s^{2}-16}=\infty$
Therefore, $s=-4$ is a vertical asymptote.
23. $f(x)=\frac{3}{x^{2}+x-2}=\frac{3}{(x+2)(x-1)}$
$\lim _{x \rightarrow-2^{-}} \frac{3}{x^{2}+x-2}=\infty$ and $\lim _{x \rightarrow-2^{+}} \frac{3}{x^{2}+x-2}=-\infty$
Therefore, $x=-2$ is a vertical asymptote.
$\lim _{x \rightarrow 1^{-}} \frac{3}{x^{2}+x-2}=-\infty$ and $\lim _{x \rightarrow 1^{+}} \frac{3}{x^{2}+x-2}=\infty$
Therefore, $x=1$ is a vertical asymptote.
24. $g(x)=\frac{x^{2}-5 x+25}{x^{3}+125}$
$=\frac{x^{2}-5 x+25}{(x+5)\left(x^{2}-5 x+25\right)}$
$=\frac{1}{x+5}$
$\lim _{x \rightarrow-5^{-}} \frac{1}{x+5}=-\infty$ and $\lim _{x \rightarrow-5^{+}} \frac{1}{x+5}=\infty$
Therefore, $x=-5$ is a vertical asymptote.
25. $f(x)=\frac{4\left(x^{2}+x-6\right)}{x\left(x^{3}-2 x^{2}-9 x+18\right)}$

$$
\begin{aligned}
& =\frac{4(x+3)(x-2)}{x(x-2)\left(x^{2}-9\right)} \\
& =\frac{4}{x(x-3)}, x \neq-3,2
\end{aligned}
$$

$\lim _{x \rightarrow 0^{-}} f(x)=\infty$ and $\lim _{x \rightarrow 0^{+}} f(x)=-\infty$
Therefore, $x=0$ is a vertical asymptote.
$\lim _{x \rightarrow 3^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow 3^{+}} f(x)=\infty$
Therefore, $x=3$ is a vertical asymptote.

$$
\begin{aligned}
\lim _{x \rightarrow 2} f(x) & =\frac{4}{2(2-3)} \\
& =-2
\end{aligned}
$$

and
$\lim _{x \rightarrow-3} f(x)=\frac{4}{-3(-3-3)}=\frac{2}{9}$
Therefore, the graph has holes at $x=2$ and $x=-3$.
26. $h(x)=\frac{x^{2}-9}{x^{3}+3 x^{2}-x-3}$

$$
=\frac{(x-3)(x+3)}{(x-1)(x+1)(x+3)}
$$

$$
=\frac{x-3}{(x+1)(x-1)}, x \neq-3
$$

$\lim _{x \rightarrow-1^{-}} h(x)=-\infty$ and $\lim _{x \rightarrow-1^{+}} h(x)=\infty$
Therefore, $x=-1$ is a vertical asymptote.
$\lim _{x \rightarrow 1^{-}} h(x)=\infty$ and $\lim _{x \rightarrow 1^{+}} h(x)=-\infty$
Therefore, $x=1$ is a vertical asymptote.
$\lim _{x \rightarrow-3} h(x)=\frac{-3-3}{(-3+1)(-3-1)}=-\frac{3}{4}$
Therefore, the graph has a hole at $x=-3$.
27. $f(x)=\frac{x^{2}-2 x-15}{x^{3}-5 x^{2}+x-5}$
$=\frac{(x-5)(x+3)}{(x-5)\left(x^{2}+1\right)}$
$=\frac{x+3}{x^{2}+1}, x \neq 5$
$\lim _{x \rightarrow 5} f(x)=\frac{5+3}{5^{2}+1}=\frac{15}{26}$
There are no vertical asymptotes. The graph has a hole at $x=5$.
28. $h(t)=\frac{t^{2}-2 t}{t^{4}-16}=\frac{t(t-2)}{(t-2)(t+2)\left(t^{2}+4\right)}$

$$
=\frac{t}{(t+2)\left(t^{2}+4\right)}, t \neq 2
$$

$\lim _{t \rightarrow-2^{-}} h(t)=\infty$ and $\lim _{t \rightarrow-2^{+}} h(t)=-\infty$
Therefore, $t=-2$ is a vertical asymptote.
$\lim _{t \rightarrow 2} h(t)=\frac{2}{(2+2)\left(2^{2}+4\right)}=\frac{1}{16}$
Therefore, the graph has a hole at $t=2$.
29. $f(x)=\csc \pi x=\frac{1}{\sin \pi x}$

Let n be any integer.
$\lim _{x \rightarrow n} f(x)=-\infty$ or ∞
Therefore, the graph has vertical asymptotes at $x=n$.
30. $f(x)=\tan \pi x=\frac{\sin \pi x}{\cos \pi x}$
$\cos \pi x=0$ for $x=\frac{2 n+1}{2}$, where n is an integer.
$\lim _{x \rightarrow \frac{2 n+1}{2}} f(x)=\infty$ or $-\infty$
Therefore, the graph has vertical asymptotes at
$x=\frac{2 n+1}{2}$.
31. $s(t)=\frac{t}{\sin t}$
$\sin t=0$ for $t=n \pi$, where n is an integer.
$\lim _{t \rightarrow n \pi} s(t)=\infty$ or $-\infty($ for $n \neq 0)$
Therefore, the graph has vertical asymptotes at $t=n \pi$, for $n \neq 0$.
$\lim _{t \rightarrow 0} s(t)=1$
Therefore, the graph has a hole at $t=0$.
32. $g(\theta)=\frac{\tan \theta}{\theta}=\frac{\sin \theta}{\theta \cos \theta}$
$\cos \theta=0$ for $\theta=\frac{\pi}{2}+n \pi$, where n is an integer.
$\lim _{\theta \rightarrow \frac{\pi}{2}+n \pi} g(\theta)=\infty$ or $-\infty$
Therefore, the graph has vertical asymptotes at $\theta=\frac{\pi}{2}+n \pi$.
$\lim _{\theta \rightarrow 0} g(\theta)=1$
Therefore, the graph has a hole at $\theta=0$.
33. $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=\lim _{x \rightarrow-1}(x-1)=-2 \quad$ 43. $\lim _{x \rightarrow-4^{-}}\left(x^{2}+\frac{2}{x+4}\right)=-\infty$

Removable discontinuity at $x=-1$

34. $\lim _{x \rightarrow-1^{-}} \frac{x^{2}-2 x-8}{x+1}=\infty$
$\lim _{x \rightarrow-1^{+}} \frac{x^{2}-2 x-8}{x+1}=-\infty$
Vertical asymptote at $x=-1$

35. $\lim _{x \rightarrow-1^{-}} \frac{\cos \left(x^{2}-1\right)}{x+1}=-\infty$
$\lim _{x \rightarrow-1^{+}} \frac{\cos \left(x^{2}-1\right)}{x+1}=\infty$
Vertical asymptote at $x=1$

36. $\lim _{x \rightarrow-1} \frac{\sin (x+1)}{x+1}=1$

Removable discontinuity at $x=-1$

37. $\lim _{x \rightarrow 2^{+}} \frac{x}{x-2}=\infty$
38. $\lim _{x \rightarrow 2^{-}} \frac{x^{2}}{x^{2}+4}=\frac{4}{4+4}=\frac{1}{2}$
39. $\lim _{x \rightarrow-3^{-}} \frac{x+3}{\left(x^{2}+x-6\right)}=\lim _{x \rightarrow-3^{-}} \frac{x+3}{(x+3)(x-2)}$

$$
=\lim _{x \rightarrow-3^{-}} \frac{1}{x-2}=-\frac{1}{5}
$$

40. $\lim _{x \rightarrow-(1 / 2)^{+}} \frac{6 x^{2}+x-1}{4 x^{2}-4 x-3}=\lim _{x \rightarrow-(1 / 2)^{+}} \frac{(3 x-1)(2 x+1)}{(2 x-3)(2 x+1)}$

$$
=\lim _{x \rightarrow-(1 / 2)^{+}} \frac{3 x-1}{2 x-3}=\frac{5}{8}
$$

41. $\lim _{x \rightarrow 0^{-}}\left(1+\frac{1}{x}\right)=-\infty$
42. $\lim _{x \rightarrow 0^{+}}\left(6-\frac{1}{x^{3}}\right)=-\infty$
43. $\lim _{x \rightarrow 0^{+}}\left(x-\frac{1}{x}+3\right)=-\infty$
44. $\lim _{x \rightarrow 0^{+}}\left(\sin x+\frac{1}{x}\right)=\infty$
45. $\lim _{x \rightarrow(\pi / 2)^{+}} \frac{-2}{\cos x}=\infty$
46. $\lim _{x \rightarrow \pi^{+}} \frac{\sqrt{x}}{\csc x}=\lim _{x \rightarrow \pi^{+}}(\sqrt{x} \sin x)=0$
47. $\lim _{x \rightarrow 0^{-}} \frac{x+2}{\cot x}=\lim _{x \rightarrow 0^{-}}[(x+2) \tan x]=0$
48. $\lim _{x \rightarrow(1 / 2)^{-}} x \sec \pi x=\lim _{x \rightarrow(1 / 2)^{-}} \frac{x}{\cos \pi x}=\infty$
49. $\lim _{x \rightarrow(1 / 2)^{+}} x^{2} \tan \pi x=-\infty$
50. $f(x)=\frac{x^{2}+x+1}{x^{3}-1}=\frac{x^{2}+x+1}{(x-1)\left(x^{2}+x+1\right)}$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=\infty$

51. $f(x)=\frac{x^{3}-1}{x^{2}+x+1}=\frac{(x-1)\left(x^{2}+x+1\right)}{x^{2}+x+1}$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(x-1)=0$

52. $\lim _{x \rightarrow c} f(x)=\infty$ and $\lim _{x \rightarrow c} g(x)=-2$
(a) $\lim _{x \rightarrow c}[f(x)+g(x)]=\infty-2=\infty$
(b) $\lim _{x \rightarrow c}[f(x) g(x)]=\infty(-2)=-\infty$
(c) $\lim _{x \rightarrow c} \frac{g(x)}{f(x)}=\frac{-2}{\infty}=0$
53. $\lim _{x \rightarrow c} f(x)=-\infty$ and $\lim _{x \rightarrow c} g(x)=3$
(a) $\lim _{x \rightarrow c}[f(x)+g(x)]=-\infty+3=-\infty$
(b) $\lim _{x \rightarrow c}[f(x) g(x)]=(-\infty)(3)=-\infty$
(c) $\lim _{x \rightarrow c} \frac{g(x)}{f(x)}=\frac{3}{-\infty}=0$
54. One answer is
$f(x)=\frac{x-3}{(x-6)(x+2)}=\frac{x-3}{x^{2}-4 x-12}$.
55. No. For example, $f(x)=\frac{1}{x^{2}+1}$ has no vertical asymptote.
56.

58. $m=\frac{m_{0}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}$
$\lim _{v \rightarrow c^{-}} m=\lim _{v \rightarrow c^{-}} \frac{m_{0}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}=\infty$
59. (a)

x	1	0.5	0.2	0.1	0.01	0.001	0.0001
$f(x)$	0.1585	0.0411	0.0067	0.0017	≈ 0	≈ 0	≈ 0

$$
\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x}=0
$$

(b)

x	1	0.5	0.2	0.1	0.01	0.001	0.0001
$f(x)$	0.1585	0.0823	0.0333	0.0167	0.0017	≈ 0	≈ 0

$$
\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{2}}=0
$$

(c)

x	1	0.5	0.2	0.1	0.01	0.001	0.0001
$f(x)$	0.1585	0.1646	0.1663	0.1666	0.1667	0.1667	0.1667

$$
\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{3}}=0.1667(1 / 6)
$$

(d)

x	1	0.5	0.2	0.1	0.01	0.001	0.0001
$f(x)$	0.1585	0.3292	0.8317	1.6658	16.67	166.7	1667.0

$\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{4}}=\infty$ or $n>3, \lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{n}}=\infty$.
60. $\lim _{V \rightarrow 0^{+}} P=\infty$

As the volume of the gas decreases, the pressure increases.
61. (a) $r=\frac{2(7)}{\sqrt{625-49}}=\frac{7}{12} \mathrm{ft} / \mathrm{sec}$
(b) $r=\frac{2(15)}{\sqrt{625-225}}=\frac{3}{2} \mathrm{ft} / \mathrm{sec}$
(c) $\lim _{x \rightarrow 25^{-}} \frac{2 x}{\sqrt{625-x^{2}}}=\infty$
62. (a) Average speed $=\frac{\text { Total distance }}{\text { Total time }}$

$$
\begin{aligned}
50 & =\frac{2 d}{(d / x)+(d / y)} \\
50 & =\frac{2 x y}{y+x} \\
50 y+50 x & =2 x y \\
50 x & =2 x y-50 y \\
50 x & =2 y(x-25) \\
\frac{25 x}{x-25} & =y
\end{aligned}
$$

Domain: $x>25$
(b)

x	30	40	50	60
y	150	66.667	50	42.857

(c) $\lim _{x \rightarrow 25^{+}} \frac{25 x}{\sqrt{x-25}}=\infty$

As x gets close to 25 miles per hour, y becomes larger and larger.
63. (a) $A=\frac{1}{2} b h-\frac{1}{2} r^{2} \theta=\frac{1}{2}(10)(10 \tan \theta)-\frac{1}{2}(10)^{2} \theta=50 \tan \theta-50 \theta$

Domain: $\left(0, \frac{\pi}{2}\right)$
(b)

θ	0.3	0.6	0.9	1.2	1.5
$f(\theta)$	0.47	4.21	18.0	68.6	630.1

(c) $\lim _{\theta \rightarrow \pi / 2^{-}} A=\infty$
64. (a) Because the circumference of the motor is half that of the saw arbor, the saw makes $1700 / 2=850$ revolutions per minute.
(b) The direction of rotation is reversed.
(c) $2(20 \cot \phi)+2(10 \cot \phi)$: straight sections. The angle subtended in each circle is $2 \pi-\left(2\left(\frac{\pi}{2}-\phi\right)\right)=\pi+2 \phi$.

So, the length of the belt around the pulleys is $20(\pi+2 \phi)+10(\pi+2 \phi)=30(\pi+2 \phi)$.
Total length $=60 \cot \phi+30(\pi+2 \phi)$
Domain: $\left(0, \frac{\pi}{2}\right)$
(d)

ϕ	0.3	0.6	0.9	1.2	1.5
L	306.2	217.9	195.9	189.6	188.5

(e)

(f) $\lim _{\phi \rightarrow(\pi / 2)^{-}} L=60 \pi \approx 188.5$
(All the belts are around pulleys.)
(g) $\lim _{\phi \rightarrow 0^{+}} L=\infty$
65. True. The function is undefined at a vertical asymptote.
66. True
67. False. The graphs of $y=\tan x, y=\cot x, y=\sec x$ and $y=\csc x$ have vertical asymptotes.
68. False. Let

$$
f(x)= \begin{cases}\frac{1}{x}, & x \neq 0 \\ 3, & x=0\end{cases}
$$

The graph of f has a vertical asymptote at $x=0$, but $f(0)=3$.
69. Let $f(x)=\frac{1}{x^{2}}$ and $g(x)=\frac{1}{x^{4}}$, and $c=0$.
$\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$ and $\lim _{x \rightarrow 0} \frac{1}{x^{4}}=\infty$, but $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{x^{4}}\right)=\lim _{x \rightarrow 0}\left(\frac{x^{2}-1}{x^{4}}\right)=-\infty \neq 0$.
70. Given $\lim _{x \rightarrow c} f(x)=\infty$ and $\lim _{x \rightarrow c} g(x)=L$:
(1) Difference:

Let $h(x)=-g(x)$. Then $\lim _{x \rightarrow c} h(x)=-L$, and $\lim _{x \rightarrow c}[f(x)-g(x)]=\lim _{x \rightarrow c}[f(x)+h(x)]=\infty$, by the Sum Property.
(2) Product:

If $L>0$, then for $\varepsilon=L / 2>0$ there exists $\delta_{1}>0$ such that $|g(x)-L|<L / 2$ whenever $0<|x-c|<\delta_{1}$.
So, $L / 2<g(x)<3 L / 2$. Because $\lim _{x \rightarrow c} f(x)=\infty$ then for $M>0$, there exists $\delta_{2}>0$ such that $f(x)>M(2 / L)$
whenever $|x-c|<\delta_{2}$. Let δ be the smaller of δ_{1} and δ_{2}. Then for $0<|x-c|<\delta$,
you have $f(x) g(x)>M(2 / L)(L / 2)=M$. Therefore $\lim _{x \rightarrow c} f(x) g(x)=\infty$. The proof is similar for $L<0$.
(3) Quotient: Let $\varepsilon>0$ be given.

There exists $\delta_{1}>0$ such that $f(x)>3 L / 2 \varepsilon$ whenever $0<|x-c|<\delta_{1}$ and there exists $\delta_{2}>0$ such that $|g(x)-L|<L / 2$ whenever $0<|x-c|<\delta_{2}$. This inequality gives us $L / 2<g(x)<3 L / 2$. Let δ be the smaller of δ_{1} and δ_{2}. Then for $0<|x-c|<\delta$, you have
$\left|\frac{g(x)}{f(x)}\right|<\frac{3 L / 2}{3 L / 2 \varepsilon}=\varepsilon$.
Therefore, $\lim _{x \rightarrow c} \frac{g(x)}{f(x)}=0$.
71. Given $\lim _{x \rightarrow c} f(x)=\infty$, let $g(x)=1$. Then $\lim _{x \rightarrow c} \frac{g(x)}{f(x)}=0$ by Theorem 1.15.
72. Given $\lim _{x \rightarrow c} \frac{1}{f(x)}=0$. Suppose $\lim _{x \rightarrow c} f(x)$ exists and equals L.

Then, $\lim _{x \rightarrow c} \frac{1}{f(x)}=\frac{\lim _{x \rightarrow c} 1}{\lim _{x \rightarrow c} f(x)}=\frac{1}{L}=0$.
This is not possible. So, $\lim _{x \rightarrow c} f(x)$ does not exist.
73. $f(x)=\frac{1}{x-3}$ is defined for all $x>3$. Let $M>0$ be given. You need $\delta>0$ such that $f(x)=\frac{1}{x-3}>M$ whenever $3<x<3+\delta$. Equivalently, $x-3<\frac{1}{M}$ whenever $|x-3|<\delta, x>3$. So take $\delta=\frac{1}{M}$. Then for $x>3$ and $|x-3|<\delta, \frac{1}{x-3}>\frac{1}{8}=M$ and so $f(x)>M$. Thus, $\lim _{x \rightarrow 3^{+}} \frac{1}{x-3}=\infty$.
74. $f(x)=\frac{1}{x-5}$ is defined for all $x<5$. Let $N<0$ be given. You need $\delta>0$ such that $f(x)=\frac{1}{x-5}<N$ whenever $5-\delta<x<5$. Equivalently, $x-5>\frac{1}{N}$ whenever $|x-5|<\delta, x<5$. Equivalently, $\frac{1}{|x-5|}<-\frac{1}{N}$ whenever $|x-5|<\delta, x<5$. So take $\delta=-\frac{1}{N}$. Note that $\delta>0$ because $N<0$. For $|x-5|<\delta$ and $x<5, \frac{1}{|x-5|}>\frac{1}{\delta}=-N$, and $\frac{1}{x-5}=-\frac{1}{|x-5|}<N$. Thus, $\lim _{x \rightarrow 5^{-}} \frac{1}{x-5}=-\infty$.
75. $f(x)=\frac{3}{8-x}$ is defined for all $x>8$. Let $N<0$ be given. You need $\delta>0$ such that $f(x)=\frac{3}{8-x}<N$ whenever $8<x<8+\delta$. Equivalently, $\frac{8-x}{3}>\frac{1}{N}$ whenever $|x-8|<\delta, x>8$. Equivalently, $|8-x|<\frac{-3}{N}$ whenever $|x-8|<\delta, x>8$. So, let $\delta=\frac{-3}{N}$. Note that $\delta>0$ because $N<0$. Finally, for $|x-8|<\delta$ and $x>8$, $\frac{1}{|x-8|}>\frac{1}{\delta}=\frac{N}{-3}, \frac{-3}{|x-8|}<N$, and $\frac{3}{8-x}<N$. Thus, $\lim _{x \rightarrow 8^{+}} f(x)=-\infty$.
76. $f(x)=\frac{6}{9-x}$ is defined for all $x<9$. Let $M>0$ be given. You need $\delta>0$ such that $f(x)=\frac{6}{9-x}>M$ whenever $9-\delta<x<9$. Equivalently, $9-x<\frac{6}{M}$ whenever $|x-9|<\delta, x<9$. So, let $\delta=\frac{6}{M}$. Finally, for $|x-9|<\delta$ and $x<9,|x-9|<\frac{6}{M}, \frac{1}{|x-9|}>\frac{M}{6}$, and $\frac{6}{9-x}>M$. Thus, $\lim _{x \rightarrow 9^{-}} f(x)=\delta$.

Review Exercises for Chapter 1

1. Calculus required. Using a graphing utility, you can estimate the length to be 8.3. Or, the length is slightly longer than the distance between the two points, approximately 8.25 .

2. Precalculus. $L=\sqrt{(9-1)^{2}+(3-1)^{2}} \approx 8.25$
3. $f(x)=\frac{x-3}{x^{2}-7 x+12}$

x	2.9	2.99	2.999	3	3.001	3.01	3.1
$f(x)$	-0.9091	-0.9901	-0.9990	$?$	-1.0010	-1.0101	-1.1111

$\lim _{x \rightarrow 3} f(x) \approx-1.0000$ (Actual limit is -1 .)

4. $f(x)=\frac{\sqrt{x+4}-2}{x}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	0.2516	0.2502	0.2500	$?$	0.2500	0.2498	0.2485

$\lim _{x \rightarrow 0} f(x) \approx 0.2500$ (Actual limit is $\frac{1}{4}$.)

5. $h(x)=\llbracket-\frac{x}{2} \rrbracket+x^{2}$
(a) The limit does not exist at $x=2$. The function approaches 3 from the left side of 2 , but it approaches 2 from the right side of 2 .
(b) $\lim _{x \rightarrow 1} h(x)=\llbracket-\frac{1}{2} \rrbracket+x^{2}=-1+1=0$
6. $g(x)=\frac{-2 x}{x-3}$
(a) $\lim _{x \rightarrow 3} g(x)$ does not exist because the function increases and decreases without bound as x approaches 3 .
(b) $\lim _{x \rightarrow 0} g(x)=\frac{-2(0)}{0-3}=0$
7. $\lim _{x \rightarrow 1}(x+4)=1+4=5$

Let $\mathcal{E}>0$ be given. Choose $\delta=\varepsilon$. Then for $0<|x-1|<\delta=\varepsilon$, you have

$$
\begin{aligned}
|x-1| & <\varepsilon \\
|(x+4)-5| & <\varepsilon \\
|f(x)-L| & <\varepsilon .
\end{aligned}
$$

8. $\lim _{x \rightarrow 9} \sqrt{x}=\sqrt{9}=3$

Let $\varepsilon>0$ be given. You need
$|\sqrt{x}-3|<\varepsilon \Rightarrow|\sqrt{x}+3||\sqrt{x}-3|<\varepsilon|\sqrt{x}+3| \Rightarrow|x-9|<\varepsilon|\sqrt{x}+3|$.
Assuming $4<x<16$, you can choose $\delta=5 \varepsilon$.
So, for $0<|x-9|<\delta=5 \varepsilon$, you have

$$
\begin{aligned}
|x-9| & <5 \varepsilon<|\sqrt{x}+3| \varepsilon \\
|\sqrt{x}-3| & <\varepsilon \\
|f(x)-L| & <\varepsilon
\end{aligned}
$$

9. $\lim _{x \rightarrow 2}\left(1-x^{2}\right)=1-2^{2}=-3$

Let $\varepsilon>0$ be given. You need
$\left|1-x^{2}-(-3)\right|<\varepsilon \Rightarrow\left|x^{2}-4\right|=|x-2||x+2|<\varepsilon \Rightarrow|x-2|<\frac{1}{|x+2|} \varepsilon$
Assuming $1<x<3$, you can choose $\delta=\frac{\varepsilon}{5}$.
So, for $0<|x-2|<\delta=\frac{\varepsilon}{5}$, you have

$$
\begin{aligned}
|x-2| & <\frac{\varepsilon}{5}<\frac{\varepsilon}{|x+2|} \\
|x-2||x+2| & <\varepsilon \\
\left|x^{2}-4\right| & <\varepsilon \\
\left|4-x^{2}\right| & <\varepsilon \\
\left|\left(1-x^{2}\right)-(-3)\right| & <\varepsilon \\
|f(x)-L| & <\varepsilon .
\end{aligned}
$$

10. $\lim _{x \rightarrow 5} 9=9$. Let $\varepsilon>0$ be given. δ can be any positive number. So, for $0<|x-5|<\delta$, you have

$$
\begin{array}{r}
|9-9|<\varepsilon \\
|f(x)-L|<\varepsilon
\end{array}
$$

11. $\lim _{x \rightarrow-6} x^{2}=(-6)^{2}=36$
12. $\lim _{x \rightarrow 0}(5 x-3)=5(0)-3=-3$
13. $\lim _{t \rightarrow 4} \sqrt{t+2}=\sqrt{4+2}=\sqrt{6}=2.45$
14. $\lim _{x \rightarrow 2} \sqrt{x^{3}+1}=\sqrt{2^{3}+1}=\sqrt{8+1}=\sqrt{9}=3$
15. $\lim _{x \rightarrow 27}(\sqrt[3]{x}-1)^{4}=(\sqrt[3]{27}-1)^{4}=(3-1)^{4}=2^{4}=16$
16. $\lim _{x \rightarrow 7}(x-4)^{3}=(7-4)^{3}=3^{3}=27$
17. $\lim _{x \rightarrow 4} \frac{4}{x-1}=\frac{4}{4-1}=\frac{4}{3}$
18. $\lim _{x \rightarrow 2} \frac{x}{x^{2}+1}=\frac{2}{2^{2}+1}=\frac{2}{4+1}=\frac{2}{5}$
19. $\lim _{x \rightarrow-3} \frac{2 x^{2}+11 x+15}{x+3}=\lim _{x \rightarrow-3} \frac{(2 x+5)(x+3)}{x+3}$
$=\lim _{x \rightarrow-3}(2 x+5)$
$=2(-3)+5$
$=-1$
20. $\lim _{t \rightarrow 4} \frac{t^{2}-16}{t-4}=\lim _{t \rightarrow 4} \frac{(t-4)(t+4)}{t-4}$

$$
=\lim _{t \rightarrow 4}(t+4)=4+4=8
$$

21. $\lim _{x \rightarrow 4} \frac{\sqrt{x-3}-1}{x-4}=\lim _{x \rightarrow 4} \frac{\sqrt{x-3}-1}{x-4} \cdot \frac{\sqrt{x-3}+1}{\sqrt{x-3}+1}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 4} \frac{(x-3)-1}{(x-4)(\sqrt{x-3}+1)} \\
& =\lim _{x \rightarrow 4} \frac{1}{\sqrt{x-3}+1}=\frac{1}{2}
\end{aligned}
$$

22. $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x} \cdot \frac{\sqrt{4+x}+2}{\sqrt{4+x}+2}$

$$
=\lim _{x \rightarrow 0} \frac{1}{\sqrt{4+x}+2}=\frac{1}{4}
$$

23. $\lim _{x \rightarrow 0} \frac{[1 /(x+1)]-1}{x}=\lim _{x \rightarrow 0} \frac{1-(x+1)}{x(x+1)}$

$$
=\lim _{x \rightarrow 0} \frac{-1}{x+1}=-1
$$

24. $\lim _{s \rightarrow 0} \frac{(1 / \sqrt{1+s})-1}{s}=\lim _{s \rightarrow 0}\left[\frac{(1 / \sqrt{1+s})-1}{s} \cdot \frac{(1 / \sqrt{1+s})+1}{(1 / \sqrt{1+s})+1}\right]$

$$
=\lim _{s \rightarrow 0} \frac{[1 /(1+s)]-1}{s[(1 / \sqrt{1+s})+1]}=\lim _{s \rightarrow 0} \frac{-1}{(1+s)[(1 / \sqrt{1+s})+1]}=-\frac{1}{2}
$$

25. $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}=\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}\right)\left(\frac{1-\cos x}{x}\right)=(1)(0)=0$
26. $\lim _{x \rightarrow(\pi / 4)} \frac{4 x}{\tan x}=\frac{4(\pi / 4)}{1}=\pi$
27. $\lim _{\Delta x \rightarrow 0} \frac{\sin [(\pi / 6)+\Delta x]-(1 / 2)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\sin (\pi / 6) \cos \Delta x+\cos (\pi / 6) \sin \Delta x-(1 / 2)}{\Delta x}$

$$
=\lim _{\Delta x \rightarrow 0} \frac{1}{2} \cdot \frac{(\cos \Delta x-1)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{\sqrt{3}}{2} \cdot \frac{\sin \Delta x}{\Delta x}=0+\frac{\sqrt{3}}{2}(1)=\frac{\sqrt{3}}{2}
$$

28. $\lim _{\Delta x \rightarrow 0} \frac{\cos (\pi+\Delta x)+1}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\cos \pi \cos \Delta x-\sin \pi \sin \Delta x+1}{\Delta x}$

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0}\left[-\frac{(\cos \Delta x-1)}{\Delta x}\right]-\lim _{\Delta x \rightarrow 0}\left[\sin \pi \frac{\sin \Delta x}{\Delta x}\right] \\
& =-0-(0)(1)=0
\end{aligned}
$$

29. $\lim _{x \rightarrow c}[f(x) g(x)]=\left[\lim _{x \rightarrow c} f(x)\right]\left[\lim _{x \rightarrow c} g(x)\right]$

$$
=(-6)\left(\frac{1}{2}\right)=-3
$$

31. $\lim _{x \rightarrow c}[f(x)+2 g(x)]=\lim _{x \rightarrow c} f(x)+2 \lim _{x \rightarrow c} g(x)$
$=-6+2\left(\frac{1}{2}\right)=-5$
32. $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}=\frac{-6}{\left(\frac{1}{2}\right)}=-12$
33. $\lim _{x \rightarrow c}[f(x)]^{2}=\left[\lim _{x \rightarrow c} f(x)\right]^{2}$ $=(-6)^{2}=36$
34. $f(x)=\frac{\sqrt{2 x+9}-3}{x}$

The limit appears to be $\frac{1}{3}$.

x	-0.01	-0.001	0	0.001	0.01
$f(x)$	0.3335	0.3333	$?$	0.3333	0.331

$\lim _{x \rightarrow 0} f(x) \approx 0.3333$
$\lim _{x \rightarrow 0} \frac{\sqrt{2 x+9}-3}{x} \cdot \frac{\sqrt{2 x+9}+3}{\sqrt{2 x+9}+3}=\lim _{x \rightarrow 0} \frac{(2 x+9)-9}{x[\sqrt{2 x+9}+3]}=\lim _{x \rightarrow 0} \frac{2}{\sqrt{2 x+9}+3}=\frac{2}{\sqrt{9}+3}=\frac{1}{3}$
34. $f(x)=\frac{[1 /(x+4)]-(1 / 4)}{x}$

The limit appears to be $-\frac{1}{16}$

x	-0.01	-0.001	0	0.001	0.01
$f(x)$	-0.0627	-0.0625	$?$	-0.0625	-0.0623

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x) \approx-0.0625=-\frac{1}{16} \\
& \lim _{x \rightarrow 0} \frac{\frac{1}{x+4}-\frac{1}{4}}{x}=\lim _{x \rightarrow 0} \frac{4-(x+4)}{(x+4) 4(x)}=\lim _{x \rightarrow 0} \frac{-1}{(x+4) 4}=-\frac{1}{16}
\end{aligned}
$$

35. $f(x)=\frac{x^{3}+729}{x+9}$

The limit appears to be 243 .

x	-9.1	-9.01	-9.001	-9	-8.999	-8.99	-8.9
$f(x)$	245.7100	243.2701	243.0270	$?$	242.9730	242.7301	24.3100

$\lim _{x \rightarrow-9} \frac{x^{3}+729}{x+9} \approx 243.00$
$\lim _{x \rightarrow-9} \frac{x^{3}+729}{x+9}=\lim _{x \rightarrow-9} \frac{(x+9)\left(x^{2}-9 x+81\right)}{x+9}=\lim _{x \rightarrow-9}\left(x^{2}-9 x+81\right)=81+81+81=243$
36. $f(x)=\frac{\cos x-1}{x}$

The limit appears to be 0 .

x	-0.01	-0.001	0	0.001	0.01
$f(x)$	0.005	0.0005	0	-0.0005	-0.005

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x) \approx 0.000 \\
& \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=\lim _{x \rightarrow 0} \frac{\cos x-1}{x} \cdot \frac{\cos x+1}{\cos x+1} \\
&=\lim _{x \rightarrow 0} \frac{\cos ^{2} x-1}{x(\cos x+1)} \\
&=\lim _{x \rightarrow 0} \frac{-\sin ^{2} x}{x(\cos x+1)} \\
&=\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)\left(\frac{-\sin x}{\cos x+1}\right) \\
&=(1)\left(\frac{0}{2}\right) \\
&=0
\end{aligned}
$$

37. $v=\lim _{t \rightarrow 4} \frac{s(4)-s(t)}{4-t}$
$=\lim _{t \rightarrow 4} \frac{[-4.9(16)+250]-\left[-4.9 t^{2}+250\right]}{4-t}$
$=\lim _{t \rightarrow 4} \frac{4.9\left(t^{2}-16\right)}{4-t}$
$=\lim _{t \rightarrow 4} \frac{4.9(t-4)(t+4)}{4-t}$
$=\lim _{t \rightarrow 4}[-4.9(t+4)]=-39.2 \mathrm{~m} / \mathrm{sec}$
The object is falling at about $39.2 \mathrm{~m} / \mathrm{sec}$.
38. $-4.9 t^{2}+250=0 \Rightarrow t=\frac{50}{7} \approx 7.143$

The object will hit the ground after about 7.1 seconds.
When $a=\frac{50}{7}$, the velocity is

$$
\begin{aligned}
\lim _{t \rightarrow a} \frac{s(a)-s(t)}{a-t} & =\lim _{t \rightarrow a} \frac{\left[-4.9 a^{2}+250\right]-\left[-4.9 t^{2}+250\right]}{a-t} \\
& =\lim _{t \rightarrow a} \frac{4.9\left(t^{2}-a^{2}\right)}{a-t} \\
& =\lim _{t \rightarrow a} \frac{4.9(t-a)(t+a)}{a-t} \\
& =\lim _{t \rightarrow a}[-4.9(t+a)] \\
& =-4.9(2 a) \quad\left(a=\frac{50}{7}\right) \\
& =-70 \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

39. $\lim _{x \rightarrow 3^{+}} \frac{1}{x+3}=\frac{1}{3+3}=\frac{1}{6}$
40. $\lim _{x \rightarrow 6^{-}} \frac{x-6}{x^{2}-36}=\lim _{x \rightarrow 6^{-}} \frac{x-6}{(x-6)(x+6)}$

$$
=\lim _{x \rightarrow 6^{-}} \frac{1}{x+6}=\frac{1}{12}
$$

41. $\lim _{x \rightarrow 25^{+}} \frac{\sqrt{x}-5}{x-25}=\lim _{x \rightarrow 25^{+}} \frac{\sqrt{x}-5}{(\sqrt{x}+5)(\sqrt{x}-5)}$
$=\lim _{x \rightarrow 25^{+}} \frac{1}{\sqrt{x}+5}$ $=\frac{1}{\sqrt{25}+5}=\frac{1}{5+5}=\frac{1}{10}$
42. $\lim _{x \rightarrow 3^{-}} \frac{|x-3|}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{-(x-3)}{x-3}=-1$
43. $\lim _{x \rightarrow 2} f(x)=0$
44. $\lim _{x \rightarrow 1^{+}} g(x)=1+1=2$
45. $\lim _{t \rightarrow 1} h(t)$ does not exist because $\lim _{t \rightarrow 1^{-}} h(t)=1+1=2$ and $\lim _{t \rightarrow 1^{+}} h(t)=\frac{1}{2}(1+1)=1$.
46. $\lim _{s \rightarrow-2} f(s)=2$
47. $\lim _{x \rightarrow 2^{-}}(2 \llbracket x \rrbracket+1)=2(1)+1=3$
48. $\lim _{x \rightarrow 4} \llbracket x-1 \rrbracket$ does not exist. There is a break in the graph at $x=4$.
49. $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4}{|x-2|}=\lim _{x \rightarrow 2^{-}} \frac{(x-2)(x+2)}{2-x}$

$$
=\lim _{x \rightarrow 2^{-}}-(x+2)=-(2+2)=-4
$$

50. $\lim _{x \rightarrow 1^{+}} \sqrt{x(x-1)}=\sqrt{1(1-1)}=0$
51. The function $g(x)=\sqrt{8-x^{3}}$ is continuous on $[-2,2]$ because $8-x^{3} \geq 0$ on $[-2,2]$.
52. The function $h(x)=\frac{3}{5-x}$ is not continuous on $[0,5]$ because $h(5)$ is not defined.
53. $f(x)=x^{4}-81 x$ is continuous for all real x.
54. $f(x)=x^{2}-x+20$ is continuous for all real x.
55. $f(x)=\frac{4}{x-5}$ has a nonremovable discontinuity at $x=5$ because $\lim _{x \rightarrow 5} f(x)$ does not exist.
56. $f(x)=\frac{1}{x^{2}-9}=\frac{1}{(x-3)(x+3)}$
has nonremovable discontinuities at $x= \pm 3$
because $\lim _{x \rightarrow 3} f(x)$ and $\lim _{x \rightarrow-3} f(x)$ do not exist.
57. $f(x)=\frac{x}{x^{3}-x}=\frac{x}{x\left(x^{2}-1\right)}=\frac{1}{(x-1)(x+1)}, x \neq 0$
has nonremovable discontinuities at $x= \pm 1$
because $\lim _{x \rightarrow-1} f(x)$ and $\lim _{x \rightarrow 1} f(x)$ do not exist,
and has a removable discontinuity at $x=0$ because
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1}{(x-1)(x+1)}=-1$.
58. $f(x)=\frac{x+3}{x^{2}-3 x-18}$
$=\frac{x+3}{(x+3)(x-6)}$
$=\frac{1}{x-6}, x \neq-3$
has a nonremovable discontinuity at $x=6$ because $\lim _{x \rightarrow 6} f(x)$ does not exist, and has a removable discontinuity at $x=-3$ because

$$
\lim _{x \rightarrow-3} f(x)=\lim _{x \rightarrow-3} \frac{1}{x-6}=-\frac{1}{9}
$$

59. $f(2)=5$

Find c so that $\lim _{x \rightarrow 2^{+}}(c x+6)=5$.
$c(2)+6=5$
$2 c=-1$
$c=-\frac{1}{2}$
60. $\lim _{x \rightarrow 1^{+}}(x+1)=2$
$\lim _{x \rightarrow 3^{-}}(x+1)=4$
Find b and c so that $\lim _{x \rightarrow 1^{-}}\left(x^{2}+b x+c\right)=2$ and $\lim _{x \rightarrow 3^{+}}\left(x^{2}+b x+c\right)=4$.
Consequently you get $1+b+c=2$ and $9+3 b+c=4$.
Solving simultaneously, $\quad b \quad=-3$ and $\quad c=4$.
61. $f(x)=-3 x^{2}+7$

Continuous on $(-\infty, \infty)$
62. $f(x)=\frac{4 x^{2}+7 x-2}{x+2}=\frac{(4 x-1)(x+2)}{x+2}$

Continuous on $(-\infty,-2) \cup(-2, \infty)$. There is a removable discontinuity at $x=-2$.
63. $f(x)=\sqrt{x}+\cos x$ is continuous on $[0, \infty)$.
64. $f(x)=\llbracket x+3 \rrbracket$
$\lim _{x \rightarrow k^{+}} \llbracket x+3 \rrbracket=k+3$ where k is an integer.
$\lim _{x \rightarrow k^{-}} \llbracket x+3 \rrbracket=k+2$ where k is an integer.
Nonremovable discontinuity at each integer k
Continuous on $(k, k+1)$ for all integers k
65. $f(x)=\frac{3 x^{2}-x-2}{x-1}=\frac{(3 x+2)(x-1)}{x-1}$
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}(3 x+2)=5$
Removable discontinuity at $x=1$
Continuous on $(-\infty, 1) \cup(1, \infty)$
66. $f(x)= \begin{cases}5-x, & x \leq 2 \\ 2 x-3, & x>2\end{cases}$
$\lim _{x \rightarrow 2^{-}}(5-x)=3$
$\lim _{x \rightarrow 2^{+}}(2 x-3)=1$
Nonremovable discontinuity at $x=2$
Continuous on $(-\infty, 2) \cup(2, \infty)$
67. $f(x)=2 x^{3}-3$
f is continuous on $[1,2] . f(1)=-1<0$ and $f(2)=13>0$. Therefore by the Intermediate Value Theorem, there is at least one value c in $(1,2)$ such that $2 c^{3}-3=0$.
68. $f(x)=x^{2}+x-2$

Consider the intervals $[-3,0]$ and $[0,3]$.
$f(-3)=(-3)^{2}-3-2=4>0$
$f(0)=-2<0$
By the Intermediate Value Theorem, there is at least one zero in $[-3,0]$.
$f(0)=-2<0$
$f(3)=(3)^{2}+3-2=10>0$
Again, there is at least one zero in $[0,3]$.
So, there are at least two zeros in $[-3,3]$.
69. $f(x)=x^{2}+5 x-4$
f is continuous on $[-1,2]$.
$f(-1)=(-1)^{2}+5(-1)-4=-8<2$
$f(2)=2^{2}+5(2)-4=10>2$
The Intermediate Value Theorem applies.

$$
\begin{aligned}
x^{2}+5 x-4 & =2 \\
x^{2}+5 x-6 & =0 \\
(x+6)(x-1) & =0 \\
x & =1(x=-6 \text { lies outside the interval. }) \\
c & =1
\end{aligned}
$$

So, $f(1)=2$.
70. $f(x)=(x-6)^{3}+4$
f is continuous on $[4,7]$.
$f(4)=(4-6)^{3}+4=-8+4=-4<3$
$f(7)=(7-6)^{3}+4=1+4=5>3$
The Intermediate Value Theorem applies.

$$
\begin{aligned}
(x-6)^{3}+4 & =3 \\
(x-6)^{3} & =-1 \\
x-6 & =-1 \\
x & =-1 \\
c & =5
\end{aligned}
$$

So, $f(5)=3$.
71. $\lim _{x \rightarrow 6^{-}} \frac{1}{x-6}=-\infty$
$\lim _{x \rightarrow 6^{+}} \frac{1}{x-6}=\infty$
72. $\lim _{x \rightarrow 6^{-}} \frac{-1}{(x-6)^{2}}=-\infty$
$\lim _{x \rightarrow 6^{+}} \frac{-1}{(x-6)^{2}}=-\infty$
73. $f(x)=\frac{3}{x}$
$\lim _{x \rightarrow 0^{-}} \frac{3}{x}=-\infty$
$\lim _{x \rightarrow 0^{+}} \frac{3}{x}=\infty$
Therefore, $x=0$ is a vertical asymptote.
74. $f(x)=\frac{5}{(x-2)^{4}}$
$\lim _{x \rightarrow 2^{-}} \frac{5}{(x-2)^{4}}=\infty=\lim _{x \rightarrow 2^{+}} \frac{5}{(x-2)^{4}}$
Therefore, $x=2$ is a vertical asymptote.
75. $f(x)=\frac{x^{3}}{x^{2}-9}=\frac{x^{3}}{(x+3)(x-3)}$
$\lim _{x \rightarrow-3^{-}} \frac{x^{3}}{x^{2}-9}=-\infty$ and $\lim _{x \rightarrow-3^{+}} \frac{x^{3}}{x^{2}-9}=\infty$
Therefore, $x=-3$ is a vertical asymptote.
$\lim _{x \rightarrow-3^{-}} \frac{x^{3}}{x^{2}-9}=-\infty$ and $\lim _{x \rightarrow 3^{+}} \frac{x^{3}}{x^{2}-9}=\infty$
Therefore, $x=3$ is a vertical asymptote.
76. $f(x)=\frac{6 x}{36-x^{2}}=-\frac{6 x}{(x+6)(x-6)}$
$\lim _{x \rightarrow-6^{-}} \frac{6 x}{36-x^{2}}=\infty$ and $\lim _{x \rightarrow-6^{+}} \frac{6 x}{36-x^{2}}=-\infty$
Therefore, $x=-6$ is a vertical asymptote.
$\lim _{x \rightarrow 6^{-}} \frac{6 x}{36-x^{2}}=\infty$ and $\lim _{x \rightarrow 6^{+}} \frac{6 x}{36-x^{2}}=-\infty$
Therefore, $x=6$ is a vertical asymptote.
77. $f(x)=\sec \frac{\pi x}{2}=\frac{1}{\cos \frac{\pi x}{2}}$
$\cos \frac{\pi x}{2}=0$ when $x= \pm 1, \pm 3, \ldots$
Therefore, the graph has vertical asymptotes at $x=2 n+1$, where n is an integer.
78. $f(x)=\csc \pi x=\frac{1}{\sin \pi x}$
$\sin \pi x=0$ for $x=n$, where n is an integer.
$\lim _{x \rightarrow n} f(x)=\infty$ or $-\infty$
Therefore, the graph has vertical asymptotes at $x=n$.
79. $\lim _{x \rightarrow 1^{-}} \frac{x^{2}+2 x+1}{x-1}=-\infty$
80. $\lim _{x \rightarrow(1 / 2)^{+}} \frac{x}{2 x-1}=\infty$
81. $\lim _{x \rightarrow-1^{+}} \frac{x+1}{x^{3}+1}=\lim _{x \rightarrow-1^{+}} \frac{1}{x^{2}-x+1}=\frac{1}{3}$
82. $\lim _{x \rightarrow-1^{-}} \frac{x+1}{x^{4}-1}=\lim _{x \rightarrow-1^{-}} \frac{1}{\left(x^{2}+1\right)(x-1)}=-\frac{1}{4}$
83. $\lim _{x \rightarrow 0^{+}}\left(x-\frac{1}{x^{3}}\right)=-\infty$
84. $\lim _{x \rightarrow 2^{-}} \frac{1}{\sqrt[3]{x^{2}-4}}=-\infty$
85. $\lim _{x \rightarrow 0^{+}} \frac{\sin 4 x}{5 x}=\lim _{x \rightarrow 0^{+}}\left[\frac{4}{5}\left(\frac{\sin 4 x}{4 x}\right)\right]=\frac{4}{5}$
86. $\lim _{x \rightarrow 0^{-}} \frac{\sec x^{3}}{2 x}=-\infty$
(Note: $\sec x^{3} \approx 1$ for x near 0 .)
87. $\lim _{x \rightarrow 0^{+}} \frac{\csc 2 x}{x}=\lim _{x \rightarrow 0^{+}} \frac{1}{x \sin 2 x}=\infty$
88. $\lim _{x \rightarrow 0^{-}} \frac{\cos ^{2} x}{x}=-\infty$
89. $C=\frac{80,000 p}{100-p}, 0 \leq p<0$
(a) $C(50)=\frac{80,000(50)}{100-50}=\$ 80,000$
(b) $C(90)=\frac{80,000(90)}{100-90}=\$ 720,000$
(c) $\lim _{p \rightarrow 100^{-}} C(p)=\infty$

It would be financially impossible to remove 100% of the pollutants.

Problem Solving for Chapter 1

1. (a) Perimeter $\triangle P A O=\sqrt{x^{2}+(y-1)^{2}}+\sqrt{x^{2}+y^{2}}+1$

$$
\begin{aligned}
&=\sqrt{x^{2}+\left(x^{2}-1\right)^{2}}+\sqrt{x^{2}+x^{4}}+1 \\
& \text { Perimeter } \triangle P B O=\sqrt{(x-1)^{2}+y^{2}}+\sqrt{x^{2}+y^{2}}+1 \\
&=\sqrt{(x-1)^{2}+x^{4}}+\sqrt{x^{2}+x^{4}}+1 \\
& \text { (b) } r(x)=\frac{\sqrt{x^{2}+\left(x^{2}-1\right)^{2}}+\sqrt{x^{2}+x^{4}}+1}{\sqrt{(x-1)^{2}+x^{4}}+\sqrt{x^{2}+x^{4}}+1}
\end{aligned}
$$

x	4	2	1	0.1	0.01
Perimeter $\triangle P A O$	33.02	9.08	3.41	2.10	2.01
Perimeter $\triangle P B O$	33.77	9.60	3.41	2.00	2.00
$r(x)$	0.98	0.95	1	1.05	1.005

(c) $\lim _{x \rightarrow 0^{+}} r(x)=\frac{1+0+1}{1+0+1}=\frac{2}{2}=1$
2. (a) Area $\triangle P A O=\frac{1}{2} b h=\frac{1}{2}(1)(x)=\frac{x}{2}$

Area $\triangle P B O=\frac{1}{2} b h=\frac{1}{2}(1)(y)=\frac{y}{2}=\frac{x^{2}}{2}$
(b) $a(x)=\frac{\text { Area } \triangle P B O}{\text { Area } \triangle P A O}=\frac{x^{2} / 2}{x / 2}=x$

x	4	2	1	0.1	0.01
Area $\triangle P A O$	2	1	$1 / 2$	$1 / 20$	$1 / 200$
Area $\triangle P B O$	8	2	$1 / 2$	$1 / 200$	$1 / 20,000$
$a(x)$	4	2	1	$1 / 10$	$1 / 100$

(c) $\lim _{x \rightarrow 0^{+}} a(x)=\lim _{x \rightarrow 0^{+}} x=0$
3. (a) There are 6 triangles, each with a central angle of $60^{\circ}=\pi / 3$. So,

Area hexagon $=6\left[\frac{1}{2} b h\right]=6\left[\frac{1}{2}(1) \sin \frac{\pi}{3}\right]=\frac{3 \sqrt{3}}{2} \approx 2.598$.

Error $=$ Area $($ Circle $)-$ Area $($ Hexagon $)=\pi-\frac{3 \sqrt{3}}{2} \approx 0.5435$
(b) There are n triangles, each with central angle of $\theta=2 \pi / n$. So,
$A_{n}=n\left[\frac{1}{2} b h\right]=n\left[\frac{1}{2}(1) \sin \frac{2 \pi}{n}\right]=\frac{n \sin (2 \pi / n)}{2}$.
(c)

n	6	12	24	48	96
A_{n}	2.598	3	3.106	3.133	3.139

As n gets larger and larger, $2 \pi / n$ approaches 0 . Letting $x=2 \pi / n, A_{n}=\frac{\sin (2 \pi / n)}{2 / n}=\frac{\sin (2 \pi / n)}{(2 \pi / n)} \pi=\frac{\sin x}{x} \pi$ which approaches (1) $\pi=\pi$, which is the area of the circle.
4. (a) Slope $=\frac{4-0}{3-0}=\frac{4}{3}$
(b) Slope $=-\frac{3}{4}$
Tangent line: $y-4=-\frac{3}{4}(x-3)$

$$
y=-\frac{3}{4} x+\frac{25}{4}
$$

(c) Let $Q=(x, y)=\left(x, \sqrt{25-x^{2}}\right)$
(d) $\lim _{x \rightarrow 3} m_{x}=\lim _{x \rightarrow 3} \frac{\sqrt{25-x^{2}}-4}{x-3} \cdot \frac{\sqrt{25-x^{2}}+4}{\sqrt{25-x^{2}}+4}$

$$
=\lim _{x \rightarrow 3} \frac{25-x^{2}-16}{(x-3)\left(\sqrt{25-x^{2}}+4\right)}
$$

$$
=\lim _{x \rightarrow 3} \frac{(3-x)(3+x)}{(x-3)\left(\sqrt{25-x^{2}}+4\right)}
$$

$$
=\lim _{x \rightarrow 3} \frac{-(3+x)}{\sqrt{25-x^{2}}+4}=\frac{-6}{4+4}=-\frac{3}{4}
$$

This is the slope of the tangent line at P.
$m_{x}=\frac{\sqrt{25-x^{2}}-4}{x-3}$
5. (a) Slope $=-\frac{12}{5}$
(b) Slope of tangent line is $\frac{5}{12}$.

$$
\begin{aligned}
y+12 & =\frac{5}{12}(x-5) \\
y & =\frac{5}{12} x-\frac{169}{12} \text { Tangent line }
\end{aligned}
$$

(c) $Q=(x, y)=\left(x,-\sqrt{169-x^{2}}\right)$

$$
m_{x}=\frac{-\sqrt{169-x^{2}}+12}{x-5}
$$

$$
\text { (d) } \begin{aligned}
\lim _{x \rightarrow 5} m_{x} & =\lim _{x \rightarrow 5} \frac{12-\sqrt{169-x^{2}}}{x-5} \cdot \frac{12+\sqrt{169-x^{2}}}{12+\sqrt{169-x^{2}}} \\
& =\lim _{x \rightarrow 5} \frac{144-\left(169-x^{2}\right)}{(x-5)\left(12+\sqrt{169-x^{2}}\right)} \\
& =\lim _{x \rightarrow 5} \frac{x^{2}-25}{(x-5)\left(12+\sqrt{169-x^{2}}\right)} \\
& =\lim _{x \rightarrow 5} \frac{(x+5)}{12+\sqrt{169-x^{2}}}=\frac{10}{12+12}=\frac{5}{12}
\end{aligned}
$$

This is the same slope as part (b).
6. $\frac{\sqrt{a+b x}-\sqrt{3}}{x}=\frac{\sqrt{a+b x}-\sqrt{3}}{x} \cdot \frac{\sqrt{a+b x}+\sqrt{3}}{\sqrt{a+b x}+\sqrt{3}}=\frac{(a+b x)-3}{x(\sqrt{a+b x}+\sqrt{3})}$

Letting $a=3$ simplifies the numerator.
So, $\lim _{x \rightarrow 0} \frac{\sqrt{3+b x}-\sqrt{3}}{x}=\lim _{x \rightarrow 0} \frac{b x}{x(\sqrt{3+b x}+\sqrt{3})}=\lim _{x \rightarrow 0} \frac{b}{\sqrt{3+b x}+\sqrt{3}}$
Setting $\frac{b}{\sqrt{3}+\sqrt{3}}=\sqrt{3}$, you obtain $b=6$. So, $a=3$ and $b=6$.
7. (a) $3+x^{1 / 3} \geq 0$

$$
\begin{aligned}
x^{1 / 3} & \geq-3 \\
x & \geq-27
\end{aligned}
$$

Domain: $x \geq-27, x \neq 1$ or $[-27,1) \cup(1, \infty)$
(b)

(c) $\lim _{x \rightarrow-27^{+}} f(x)=\frac{\sqrt{3+(-27)^{1 / 3}}-2}{-27-1}=\frac{-2}{-28}=\frac{1}{14} \approx 0.0714$
(d) $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{\sqrt{3+x^{1 / 3}}-2}{x-1} \cdot \frac{\sqrt{3+x^{1 / 3}}+2}{\sqrt{3+x^{1 / 3}}+2}=\lim _{x \rightarrow 1} \frac{3+x^{1 / 3}-4}{(x-1)\left(\sqrt{3+x^{1 / 3}}+2\right)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{x^{1 / 3}-1}{\left(x^{1 / 3}-1\right)\left(x^{2 / 3}+x^{1 / 3}+1\right)\left(\sqrt{3+x^{1 / 3}}+2\right)}=\lim _{x \rightarrow 1} \frac{1}{\left(x^{2 / 3}+x^{1 / 3}+1\right)\left(\sqrt{3+x^{1 / 3}}+2\right)} \\
& =\frac{1}{(1+1+1)(2+2)}=\frac{1}{12}
\end{aligned}
$$

8. $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(a^{2}-2\right)=a^{2}-2$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{a x}{\tan x}=a\left(\right.$ because $\left.\lim _{x \rightarrow 0} \frac{\tan x}{x}=1\right)$
Thus, $\quad a^{2}-2=a$

$$
\begin{aligned}
a^{2}-a-2 & =0 \\
(a-2)(a+1) & =0 \\
a & =-1,2
\end{aligned}
$$

9. (a) $\lim _{x \rightarrow 2} f(x)=3: g_{1}, g_{4}$
(b) f continuous at 2: g_{1}
(c) $\lim _{x \rightarrow 2^{-}} f(x)=3: g_{1}, g_{3}, g_{4}$
10.

(a) $f\left(\frac{1}{4}\right)=\llbracket 4 \rrbracket=4$
$f(3)=\llbracket \frac{1}{3} \rrbracket=0$
$f(1)=\llbracket 1 \rrbracket=1$
(b) $\lim _{x \rightarrow 1^{-}} f(x)=1$
$\lim _{x \rightarrow 1^{+}} f(x)=0$
$\lim _{x \rightarrow 0^{-}} f(x)=-\infty$
$\lim _{x \rightarrow 0^{+}} f(x)=\infty$
(c) f is continuous for all real numbers except $x=0, \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \ldots$
11.

(a) $\quad f(1)=\llbracket 1 \rrbracket+\llbracket-1 \rrbracket=1+(-1)=0$
$f(0)=0$
$f\left(\frac{1}{2}\right)=0+(-1)=-1$
$f(-2.7)=-3+2=-1$
(b) $\lim _{x \rightarrow 1^{-}} f(x)=-1$
$\lim _{x \rightarrow 1^{+}} f(x)=-1$
$\lim _{x \rightarrow 1 / 2} f(x)=-1$
(c) f is continuous for all real numbers except $x=0, \pm 1, \pm 2, \pm 3, \ldots$
12. (a) $v^{2}=\frac{192,000}{r}+v_{0}{ }^{2}-48$

$$
\begin{aligned}
\frac{192,000}{r} & =v^{2}-v_{0}^{2}+48 \\
r & =\frac{192,000}{v^{2}-v_{0}{ }^{2}+48} \\
\lim _{v \rightarrow 0} r & =\frac{192,000}{48-v_{0}{ }^{2}}
\end{aligned}
$$

Let $v_{0}=\sqrt{48}=4 \sqrt{3} \mathrm{mi} / \mathrm{sec}$.
(b) $v^{2}=\frac{1920}{r}+v_{0}^{2}-2.17$

$$
\frac{1920}{r}=v^{2}-v_{0}^{2}+2.17
$$

$$
r=\frac{1920}{v^{2}-v_{0}^{2}+2.17}
$$

$$
\lim _{v \rightarrow 0} r=\frac{1920}{2.17-v_{0}^{2}}
$$

Let $v_{0}=\sqrt{2.17} \mathrm{mi} / \mathrm{sec} \quad(\approx 1.47 \mathrm{mi} / \mathrm{sec})$.
(c)

$$
\begin{aligned}
r & =\frac{10,600}{v^{2}-v_{0}{ }^{2}+6.99} \\
\lim _{v \rightarrow 0} r & =\frac{10,600}{6.99-v_{0}{ }^{2}}
\end{aligned}
$$

Let $v_{0}=\sqrt{6.99} \approx 2.64 \mathrm{mi} / \mathrm{sec}$.
Because this is smaller than the escape velocity for Earth, the mass is less.
13. (a)

(b) (i) $\lim _{x \rightarrow a^{+}} P_{a, b}(x)=1$
(ii) $\lim _{x \rightarrow a^{-}} P_{a, b}(x)=0$
(iii) $\lim _{x \rightarrow b^{+}} P_{a, b}(x)=0$
(iv) $\lim _{x \rightarrow b^{-}} P_{a, b}(x)=1$
(c) $P_{a, b}$ is continuous for all positive real numbers except $x=a, b$.
(d) The area under the graph of U, and above the x-axis, is 1 .
14. Let $a \neq 0$ and let $\varepsilon>0$ be given. There exists $\delta_{1}>0$ such that if $0<|x-0|<\delta_{1}$ then $|f(x)-L|<\varepsilon$. Let $\delta=\delta_{1} /|a|$. Then for $0<|x-0|<\delta=\delta_{1} /|a|$, you have

$$
\begin{aligned}
|x| & <\frac{\delta_{1}}{|a|} \\
|a x| & <\delta_{1} \\
|f(a x)-L| & <\varepsilon
\end{aligned}
$$

As a counterexample, let $a=0$ and
$f(x)=\left\{\begin{array}{ll}1, & x \neq 0 \\ 2, & x=0\end{array}\right.$.
Then $\lim _{x \rightarrow 0} f(x)=1=L$, but
$\lim _{x \rightarrow 0} f(a x)=\lim _{x \rightarrow 0} f(0)=\lim _{x \rightarrow 0} 2=2$.

