AB Flash Cards

You need to be able to quickly evaluate sin, cos, tan, csc, sec, or cot of the following angles (or any multiple of these angles): $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{6}, \frac{\pi}{6}$and...0,30°,45°,60°,90° , , $\frac{\pi}{2}$and...0,30°,45°,60°,90°... 6 4 3 Properties of $y = \ln x$ $\overline{1}$. The domain of $y = \ln x$ is the set of all positive numbers, $x > 0$. $\overline{2}$. The range of $y = \ln x$ is the set of all real numbers, $-\infty < y < \infty$. $\overline{3}$. $y = \ln x$ is continuous and increasing everywhere on its domain. $\ln(ab) = \ln a + \ln b$. $\overline{4}$. $\ln\left(\frac{a}{b}\right) = \ln a - \ln b$. 5. $\ln a^r = r \ln a$. 6. $y = \ln x < 0$ if $0 < x < 1$. 7. 8. \lim $\ln x = +\infty$ and \lim $\ln x = -\infty$. $x \rightarrow +\infty$ $x \rightarrow 0^+$ $\log_a x = \frac{\ln x}{\ln a}$ 9.

$$
\lim_{x \to 0} \frac{\sin x}{x} = 1
$$

Definition of Derivative

$$
m = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$

Alternate Definition of Derivative Derivative at a point

 $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

$$
\lim_{h \to 0} \frac{\cosh - 1}{h} = 0
$$

d dx $\sin x = \cos x$

d dx $\cos x = -\sin x$

d dx $\tan x = \sec^2 x$

$$
\frac{d}{dx}\cot x = -\csc^2 x
$$
\n
$$
\frac{d}{dx}\sec x = \sec x \tan x
$$
\n
$$
\frac{d}{dx}\csc x = -\csc x \cot x
$$
\n
$$
\frac{d}{dx}\sin^{-1} x = \frac{1}{\sqrt{1-x^2}}
$$
\n
$$
\frac{d}{dx}\cos^{-1} x = \frac{-1}{\sqrt{1-x^2}}
$$
\n
$$
\frac{d}{dx}\tan^{-1} x = \frac{1}{x^2+1}
$$
\n
$$
\frac{d}{dx}\cot^{-1} x = \frac{-1}{x^2+1}
$$
\n
$$
\frac{d}{dx}\sec^{-1} x = \frac{1}{|x|\sqrt{x^2-1}}
$$
\n
$$
\frac{d}{dx}\csc^{-1} x = \frac{-1}{|x|\sqrt{x^2-1}}
$$
\n
$$
\int \frac{dx}{a^2+x^2} = \frac{1}{a}Arc\tan\left(\frac{x}{a}\right) + C
$$

$$
\frac{d}{dx}\csc^{-1}x = \frac{-1}{|x|\sqrt{x^2 - 1}}
$$
\n
$$
\int \frac{dx}{a^2 + x^2} = \frac{1}{a} Arc \tan\left(\frac{x}{a}\right) + C
$$
\n
$$
\int \frac{dx}{\sqrt{a^2 - x^2}} = Arc \sin\left(\frac{x}{a}\right) + C
$$
\n
$$
\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} Arc \sec\left|\frac{x}{a}\right| + C = \frac{1}{a} Arc \cos\left|\frac{a}{x}\right| + C
$$
\n
$$
\lim_{h \to 0} \frac{e^h - 1}{h} = 1
$$
\n
$$
\frac{d}{dx}e^x = e^x
$$
\n
$$
\frac{d}{dx}a^x = a^x \ln a
$$

d dx x x $ln x = \frac{1}{x}$

$$
\frac{d}{dx}\log_b x = \frac{1}{x\ln b}
$$

Power Rule

 $x^n = nx^{n-1}$ *dx d*

Product Rule $\frac{d}{dx}(uv) = u'v + uv'$

Quotient Rule 2 $'v - uv'$ *v* $u'v - uv$ *v u dx* $\frac{d}{dx}$ $\frac{u}{u}$ = $\frac{u'v}{v}$

Chain Rule
\n
$$
\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)
$$

Mean Value Theorem:

If $f(x)$ is continuous at every point of the closed interval $[a,b]$ and differentiable at every point (a,b) then there is one point *c* in (a,b) at which

$$
f'(c) = \frac{f(b) - f(a)}{b - a}
$$

Intermediate Value Theorem:

If $f(x)$ is continuous on [a, b], then $f(x)$ takes on every (y) value between $f(a)$ and $f(b)$.

Extreme Value Theorem:

If $f(x)$ is continuous on [a, b], then $f(x)$ has both an absolute max and absolute min on that interval.

Average Value

If
$$
f
$$
 is integrable on $[a,b]$, its **average value** on

$$
\[a,b\] \text{ is } \frac{1}{b-a} \int_a^b f(x) dx
$$

The Fundamental Theorem of Calculus, Part 1

If *f* is continuous on [*a*,*b*], then the function
\n
$$
F(x) = \int_{a}^{x} f(t)dt
$$
 has a derivative at every point x in
\n[*a*,*b*], and
$$
\frac{dF}{dx} = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)
$$

The Fundamental Theorem of Calculus, Part 2 (Integral Evaluation Theorem)

If *f* is continuous at every point $[a,b]$, and if F is any antiderivitive of f on $[a,b]$, then

$$
\int_{a}^{b} f(x)dx = F(b) - F(a)
$$

Y changes at a rate proportional to the amount present.

$$
\frac{dy}{dt} = ky
$$

$$
y = Ae^{kt}
$$

Derivative of Inverses

If $g(x)$ is the inverse of $f(x)$ and $f(a) = b$ then $g'(b) = \frac{1}{f'(a)}$

The Fundamental Theorem in Fogle Language Given a velocity $v(t)$ and a position at a given time... ex: when $t = 8$, the position is 4. Find the position at 2 seconds.

