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Definition of Derivative  
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Alternate Definition of Derivative 
Derivative at a point 
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Power Rule 
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Mean Value Theorem: 



 
If f x( )  is continuous at every point of the closed 
interval a b,  and differentiable at every point 
a b,b g  then there is one point c in a b,b g at which 
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Average (Mean Value) 
 
If f  is integrable on a b, , its average (mean 
value on a b,  is 
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The Fundamental Theorem of Calculus, Part 1 
 
If f  is continuous on a b, , then the function 
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The Fundamental Theorem of Calculus, Part 2 
(Integral Evaluation Theorem) 
 
If f is continuous at every point a b, , and if F is 
any antiderivitive of f  on a b, , then 
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