AB Flash Cards

$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

Definition of Derivative

$$
m=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Alternate Definition of Derivative Derivative at a point
$f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
$\lim _{h \rightarrow 0} \frac{\cosh -1}{h}=0$
$\frac{d}{d x} \sin x=\cos x$
$\frac{d}{d x} \cos x=-\sin x$
$\frac{d}{d x} \tan x=\sec ^{2} x$
$\frac{d}{d x} \cot x=-\csc ^{2} x$
$\frac{d}{d x} \sec x=\sec x \tan x$
$\frac{d}{d x} \csc x=-\csc x \cot x$
$\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x} \cos ^{-1} x=\frac{-1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x} \tan ^{-1} x=\frac{1}{x^{2}+1}$
$\frac{d}{d x} \cot ^{-1} x=\frac{-1}{x^{2}+1}$
$\frac{d}{d x} \sec ^{-1} x=\frac{1}{|x| \sqrt{x^{2}-1}}$
$\frac{d}{d x} \csc ^{-1} x=\frac{-1}{|x| \sqrt{x^{2}-1}}$
$\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$
$\frac{d}{d x} e^{x}=e^{x}$
$\frac{d}{d x} a^{x}=a^{x} \ln a$
$\frac{d}{d x} \ln x=\frac{1}{x}$
$\frac{d}{d x} \log _{b} x=\frac{1}{x \ln b}$
Power Rule
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
Product Rule
$\frac{d}{d x}(u v)=u^{\prime} v+u v^{\prime}$
Quotient Rule
$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$
Chain Rule
$\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$

Mean Value Theorem:

If $f(x)$ is continuous at every point of the closed interval $[a, b]$ and differentiable at every point (a, b) then there is one point c in (a, b) at which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Average (Mean Value)

If f is integrable on $[a, b]$, its average (mean value on $[a, b]$ is
$a v(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
The Fundamental Theorem of Calculus, Part 1
If f is continuous on $[a, b]$, then the function
$F(x)=\int_{a}^{x} f(t) d t$ has a derivative at every point x
in $[a, b]$, and $\frac{d F}{d x}=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$
The Fundamental Theorem of Calculus, Part 2 (Integral Evaluation Theorem)

If f is continuous at every point $[a, b]$, and if F is any antiderivitive of f on $[a, b]$, then
$\int_{a}^{b} f(x) d x=F(b)-F(a)$
$\boldsymbol{\operatorname { c o s }}^{2} x=\frac{\boldsymbol{\operatorname { c o s }} 2 x+1}{2}$
$\boldsymbol{\operatorname { s i n }}^{2} x=\frac{1-\boldsymbol{\operatorname { c o s }} 2 x}{2}$

